
Dependency Quantified 

Boolean Formulas 

Oberseminar THI 

Uwe Bubeck 

 

Universität Paderborn 
 

  

17.01.2013 



Outline 

• Introduction 

• Models 

• Dependency Quantification 

• DQBF Subclasses 

• Conclusion 

Uwe Bubeck                                                  Dependency Quantified Boolean Formulas 2 



Introduction 

Section 1 
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QBF extends propositional logic by allowing universal 

and existential quantifiers over propositional variables. 

Inductive definition: 

1. Every propositional formula is a QBF. 

2. If Φ is a QBF then ∀𝑥Φ and ∃𝑦Φ are also QBFs. 

3. If Φ1 and Φ2  are QBFs then ¬Φ1, Φ1 ∧ Φ2 and 

Φ1 ∨ Φ2 are also QBFs. 
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In a closed QBF, every variable is quantified. 

Semantics definition for closed QBF: 

∃𝑦 Φ 𝑦  is true if and only if 

Φ 𝑦/0  is true or Φ 𝑦/1  is true. 

∀𝑥 Φ 𝑥  is true if and only if 

Φ 𝑥/0  is true and Φ 𝑥/1  is true. 

A closed QBF is 

either true or false. 
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Application: Bounded Reachability / S-T-Connectivity 

Given a directed graph 𝐺 = (𝑉, 𝐸), start nodes 𝑆 ⊆ 𝑉, 

terminal nodes 𝑇 ⊆ 𝑉 and bound 𝑘 ≥ 0, is there a path of 

length at most 2𝑘 from some 𝑠 ∈ 𝑆  to some 𝑡 ∈ 𝑇?  

𝑇 

𝑆 

length ≤ 2𝑘  
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In Bounded Model Checking, vertices are typically binary 

vectors (𝑉 = 0,1 𝑛), and the edges are given by a 

transition relation 𝛿: 

𝛿 𝒖, 𝒗 = 1 iff there is an edge from 𝒖 = (𝑢1, … , 𝑢𝑛) to 

𝒗 = (𝑣1, … , 𝑣𝑛). 

If 𝛿 is encoded as a propositional formula, the whole 

reachability test can be formulated in propositional logic: 

𝑆 𝒗0 ∧ 𝑇 𝒗2𝑘  𝛿 𝒗𝑖 , 𝒗𝑖+1

2𝑘−1

𝑖=0
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𝑆 𝒗0 ∧ 𝑇 𝒗2𝑘  𝛿 𝒗𝑖 , 𝒗𝑖+1

2𝑘−1

𝑖=0

 

Problem: many copies of 𝛿 

Compress conjunctions of renamings / instantiations by 

universal variables: 

𝑆 𝒗0 ∧ 𝑇 𝒗2𝑘 ∧ ∀𝒖∀𝒘  𝒖 = 𝒗𝑖 ∧ 𝒘 = 𝒗𝑖+1

2𝑘−1

𝑖=0

→ 𝛿(𝒖,𝒘)  

[Dershowitz et al., 2005], [Meyer/Stockmeyer, 1973] 
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Even more compact: iterative squaring 

 

 

 

 

𝛿2𝑘 𝒂, 𝒃 ≔ ∃𝒛 𝛿2𝑘−1 𝒂, 𝒛 ∧ 𝛿2𝑘−1 𝒛, 𝒃

⋮
𝛿1 𝒂, 𝒃 ≔ 𝛿 𝒂, 𝒃

 

 𝒗0  𝒗2𝑘 

 𝒗0 ∃𝒛 

∃𝒛  𝒗2𝑘 
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Even more compact: iterative squaring 

 

 

 

 

𝛿2𝑘 𝒂, 𝒃 ≔ ∃𝒛∀𝒖∀𝒘 𝒖 = 𝒂 ∧ 𝒘 = 𝒛 ∨ 𝒖 = 𝒛 ∧ 𝒘 = 𝒃 → 𝛿2𝑘−1 𝒖,𝒘  

 

 

[Meyer/Stockmeyer, 1973] 

 𝒗0  𝒗2𝑘 

 𝒗0 ∃𝒛 

 ∃𝒛  𝒗2𝑘 

∀𝒖 ∀𝒘 

By the existential quantifier, the choice of the 

middle point becomes local to each piece. 



Models 

Section 2 



Tree Models 

∀𝑥1∃𝑦1∀𝑥2∃𝑦2 𝑥1 ∨ ¬𝑦1 ∧ ¬𝑥1 ∨ 𝑦2 ∧ 𝑦1 ∨ 𝑥2 ∨ ¬𝑦2 ∧ ¬𝑥2 ∨ 𝑦2  
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = ? 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 



Tree Models 

∀𝑥1∃𝑦1∀𝑥2∃𝑦2 𝑥1 ∨ ¬𝑦1 ∧ ¬𝑥1 ∨ 𝑦2 ∧ 𝑦1 ∨ 𝑥2 ∨ ¬𝑦2 ∧ ¬𝑥2 ∨ 𝑦2  
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 0 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 0 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = 1 𝑦2 = ? 𝑦2 = ? 



Tree Models 
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 0 𝑦1 = 1 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = 1 𝑦2 = 1 𝑦2 = 1 
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 0 𝑦1 = 1 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = 1 𝑦2 = 1 𝑦2 = 1 
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We can describe the choices for 𝑦1 and 𝑦2 by Skolem or 

model functions 𝑓𝑦1 𝑥1 = 𝑥1 and 𝑓𝑦2 𝑥1, 𝑥2 = 𝑥1 ∨ 𝑥2. 

𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 0 𝑦1 = 1 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = 1 𝑦2 = 1 𝑦2 = 1 
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Theorem 

A closed prenex QBF Φ with existential variables 

𝑦1, … , 𝑦𝑚 is true iff there exist 𝑓𝑦1 , … , 𝑓𝑦𝑚 such that: 

1. Each 𝑓𝑦𝑖 is a propositional formula over universal 

variables which are quantified further outside than 𝑦𝑖. 

2. Simultaneous replacement Φ 𝑦1/𝑓𝑦1 , … , 𝑦𝑚/𝑓𝑦𝑚  of all 

variable occurrences with corresponding functions 

produces a true formula. 



Dependency 

Quantification 

Section 3 
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Motivation: overcome the tight correspondence between 

prefix order and arguments of the model functions. 

Prenex QBF: ∀𝑥1∃𝑦1∀𝑥2∃𝑦2∀𝑥3∃𝑦3 𝜙 

with model functions 𝑓𝑦1 𝑥1 , 𝑓𝑦2 𝑥1, 𝑥2 , 𝑓𝑦3 𝑥1, 𝑥2, 𝑥3  

    and 𝑥1 ⊆ 𝑥1, 𝑥2 ⊆ {𝑥1, 𝑥2, 𝑥3}. 

Now DQBF: ∀𝑥1∀𝑥2∃𝑦1 𝑥1 ∃𝑦2 𝑥2 ∃𝑦3 𝑥1, 𝑥2  𝜙 

with model functions 𝑓𝑦1 𝑥1 , 𝑓𝑦2 𝑥2 , 𝑓𝑦3 𝑥1, 𝑥2  

    and 𝑥1 ⊈ 𝑥2 . 
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A (closed) DQBF is a formula of the form 

Φ = ∀𝑥1…∀𝑥𝑛∃𝑦1( 𝑥𝑑1,1 , … , 𝑥𝑑1,𝑛1)…∃𝑦𝑚( 𝑥𝑑𝑚,1 , … , 𝑥𝑑𝑚,𝑛𝑚) 𝜙 

where 𝑑𝑖,1, … , 𝑑𝑖,𝑛𝑖 ⊆ 1,… , 𝑛  are the dependencies of 𝑦𝑖, 

and 𝜙 is a propositional matrix over 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚. 

Semantics Definition 

Φ is true if and only if there exist 𝑓𝑦1 , … , 𝑓𝑦𝑚 such that: 

1. Each 𝑓𝑦𝑖 is a propositional formula over 𝑥𝑑𝑖,1 , … , 𝑥𝑑𝑖,𝑛𝑖
. 

2. Φ 𝑦1/𝑓𝑦1 , … , 𝑦𝑚/𝑓𝑦𝑚  is true. 
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Generalization to DQBF with free variables [Bubeck, 2010] 

A DQBF with free variables 𝑧1, … , 𝑧𝑟 is a formula 

Φ = ∀𝑥1…∀𝑥𝑛∃𝑦1( 𝑥𝑑1,1 , … , 𝑥𝑑1,𝑛1)…∃𝑦𝑚( 𝑥𝑑𝑚,1 , … , 𝑥𝑑𝑚,𝑛𝑚) 𝜙 

where 𝑑𝑖,1, … , 𝑑𝑖,𝑛𝑖 ⊆ 1,… , 𝑛 , and 𝜙 is a propositional 

matrix over 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚 and 𝑧1, … , 𝑧𝑟. 

Semantics Definition 

Φ ∈ DQBF with free variables 𝑧1, … , 𝑧𝑟 is satisfiable iff 

there exists a truth assignment 𝜏 𝑧1 , … , 𝜏 𝑧𝑟 ∈ 0,1
𝑟 

such that Φ[𝑧1/𝜏 𝑧1 , … , 𝑧𝑟/𝜏 𝑧𝑟 ] is true. 
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The semantics of QBF is defined inductively as in the 

tree models. For DQBF, direct recursive evaluation 

without storing (parts of) model functions seems not 

possible. 

Workaround [Fröhlich et al., 2012] 

Whenever choosing ∃𝑦𝑖(𝑥𝑑𝑖,1 , … , 𝑥𝑑𝑖,𝑛𝑖
) in DPLL style, add 

a Skolem clause (𝑙(𝑥𝑑𝑖,1) ∧ ⋯∧ 𝑙(𝑥𝑑𝑖,𝑛𝑖
)) → 𝑙 𝑦𝑖  

where 𝑙 𝑣 = 𝑣 or 𝑙 𝑣 = ¬𝑣 according to the current 

assignment to 𝑣. 
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Theorem 

The DQBF satisfiability problem is NEXPTIME-complete. 

[Peterson / Reif, 1979] 

This even holds for relatively simple prefixes of the form 

∀𝒖∀𝒗∃𝒚 𝒖 ∃𝒛 𝒗  

where 𝒖, 𝒗, 𝒚 and 𝒛 are (disjoint) tuples of variables. 

Surprising at first, since we can have non-prenex QBF 

   ∀𝒖∃𝒚 𝜙 𝒖, 𝒚 ∧ ∀𝒗∃𝒛 𝜓 𝒗, 𝒛  

≈ ∀𝒖∀𝒗∃𝒚∃𝒛 𝜙 𝒖, 𝒚 ∧ 𝜓 𝒗, 𝒛  



DQBF Encodings 1/6 
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Additional restriction of non-prenex QBF: 

variables from disjoint quantifier scopes cannot occur in 

common subformulas: 

∀𝒖∃𝒚 𝜙 𝒖, 𝒚 ∧ ∀𝒗∃𝒛 𝜓 𝒗, 𝒛 ∧ 𝜏(𝒚, 𝒛)  

 

Why combine „unrelated“ variables in one subformula? 

not possible 
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Alternative modeling approach for bounded reachability: 

Two-player game where 

• universal player presents a step counter 𝒄 = (𝑐1, … , 𝑐𝑘), 

• existential player must find corresponding 𝒖 and 𝒗 

so that 𝒄 = 0 → 𝑆(𝒖), (𝒄 = 2𝑘 − 1) → 𝑇(𝒗) and 𝛿(𝒖, 𝒗). 

QBF formulation: 

∀𝒄∃𝒖∃𝒗 𝒄 = 0 → 𝑆 𝒖 ∧ 𝒄 = 2𝑘 − 1 → 𝑇 𝒗 ∧ 𝛿(𝒖, 𝒗) 

→ Clearly flawed: does not enforce a continuous path. 
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Use two existential players and two counters: 

• If 𝒄(2) = 𝒄(1), both existential players must 

behave identically. 

• If 𝒄(2) = 𝒄(1) + 1, second player continues 

where first player stopped. 

 

∀𝒄 1 ∃𝒖 1 ∃𝒗 1 ∀𝒄 2 ∃𝒖 2 ∃𝒗 2  

(𝒄 2 = 𝒄 1 ) → (𝒖 1 = 𝒖 2 ) ∧ (𝒗 1 = 𝒗 2 ) ∧ 

(𝒄 2 = 𝒄 1 + 1) → (𝒗 1 = 𝒖 2 ) ∧ 

(𝒄(1) = 0) → 𝑆(𝒖 1 ) ∧ (𝒄(1) = 2𝑘 − 1) → 𝑇(𝒗 1 ) ∧ 𝛿(𝒖 1 , 𝒗 1 ) 
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∀𝒄 1 ∃𝒖 1 ∃𝒗 1 ∀𝒄 2 ∃𝒖 2 ∃𝒗 2  

(𝒄 2 = 𝒄 1 ) → (𝒖 1 = 𝒖 2 ) ∧ (𝒗 1 = 𝒗 2 ) ∧ 

(𝒄 2 = 𝒄 1 + 1) → (𝒗 1 = 𝒖 2 ) ∧ 

(𝒄(1) = 0) → 𝑆(𝒖 1 ) ∧ (𝒄 1 = 2𝑘 − 1) → 𝑇(𝒗 1 ) ∧ 𝛿 𝒖 1 , 𝒗 1  

Since 𝒖 2  and 𝒗 2  also depend on 𝒄 1 , second player can 

cheat by behaving differently: 

𝒄(1) = 𝜏, 𝒄(2) = 𝜏 + 1:   𝒄(1) = 𝜏 + 1, 𝒄(2) = 𝜏 + 1: 

Player 1: 𝑎 → 𝑏   Player 1: 𝑑 → 𝑒 

Player 2: 𝑏 → 𝑐   Player 2: 𝑏 → 𝑐   𝑑 → 𝑒 

 



DQBF Encodings 5/6 
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Choice of 𝒖 2  and 𝒗 2  should only depend on 𝒄 2 . 

Solution: explicitly indicate dependencies in DQBF 

 ∀𝒄 1 ∀𝒄 2 ∃𝒖 1 (𝒄 1 )∃𝒗 1 (𝒄 1 ) ∃𝒖 2 (𝒄 2 )∃𝒗 2 (𝒄 2 ) 

(𝒄 2 = 𝒄 1 ) → (𝒖 1 = 𝒖 2 ) ∧ (𝒗 1 = 𝒗 2 ) ∧ 

(𝒄 2 = 𝒄 1 + 1) → (𝒗 1 = 𝒖 2 ) ∧ 

(𝒄(1) = 0) → 𝑆(𝒖 1 ) ∧ (𝒄 1 = 2𝑘 − 1) → 𝑇(𝒗 1 ) ∧ 𝛿 𝒖 1 , 𝒗 1  

Comparison with QBF encodings: 

DQBF needs only 𝑂(𝑛) existential variables vs. 𝑂(𝑘 ⋅ 𝑛). 
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• QBF: two-player game, 1 univ. vs 1 ex. player, 

PSPACE-complete 

• DQBF: three-player game, 1 univ vs 2 ex. players, 

NEXPTIME-complete (→ MIP [Babai et al. 1991]) 

Dependencies make sure that the existential players do 

not communicate. 

Allows encodings which reuse space. 

Example: create unique existentials indexed by 𝒊 

∀𝒊∀𝒊′∃𝒚 𝒊 ∃𝒚 𝒊′  𝒊 = 𝒊′ → 𝒚 = 𝒚′ ∧ 𝒊 ≠ 𝒊′ → 𝒚 ≠ 𝒚′  



DQBF Reasoning Techniques 
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Important techniques for QBF: 

• Q-resolution 

open problem for DQBF 

• Universal quantifier expansion 

∀𝑥∃𝑦 Φ 𝑥, 𝑦 ≈ ∃𝑦0∃𝑦1 Φ 0, 𝑦0 ∧ Φ(1, 𝑦1) 

For QBF, expansion follows immediately from the 

inductive QBF semantics. 

A generalization to the function semantics of DQBF 

can be proven.  



DQBF Universal Expansion 
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Theorem [Bubeck, 2010] 

∀𝑥1…∀𝑥𝑛∃𝑦1(𝒙𝒅1)…∃𝑦𝑘(𝒙𝒅𝑘) 

∃𝑦𝑘+1(𝒙𝒅𝑘+1 , 𝑥𝑛)…∃𝑦𝑚(𝒙𝒅𝑚 , 𝑥𝑛) 

𝜙 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚, 𝒛  

with 𝑥𝑛 ∉ 𝒙𝒅𝑖 for 𝑖 ≤ 𝑘 

is equivalent to 

∀𝑥1…∀𝑥𝑛−1∀𝑥𝑛∃𝑦1(𝒙𝒅1)…∃𝑦𝑘(𝒙𝒅𝑘) 

∃𝑦𝑘+1, 0 , 𝑦𝑘+1, 1 (𝒙𝒅𝑘+1 , 𝑥𝑛)…∃𝑦𝑚, 0 , 𝑦𝑚, 1 (𝒙𝒅𝑚 , 𝑥𝑛) 

𝜙(𝑥1, … , 𝑥𝑛−1, 0, 𝑦1, … , 𝑦𝑘 , 𝑦𝑘+1, 0 , … , 𝑦𝑚, 0 , 𝒛) ∧ 

𝜙(𝑥1, … , 𝑥𝑛−1, 1, 𝑦1, … , 𝑦𝑘 , 𝑦𝑘+1, 1 , … , 𝑦𝑚, 1 , 𝒛). 



DQBF 

Subclasses 

Section 4 
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Whole Matrix Restrictions 1/2 
Known tractable subclasses: 

• DQ2-CNF satisfiability is solvable in linear time by a 

modification of the Aspvall / Plass / Tarjan algorithm. 

[Bubeck / Kleine Büning, 2010] 

• DQHORN satisfiability is solvable in quadratic time. 

[Bubeck / Kleine Büning, 2006] 
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Whole Matrix Restrictions 2/2 
Modification of the Aspvall / Plass / Tarjan algorithm: 

• Q2-CNF unsatisfiability criterion (2): 

a universal node over 𝑥 is in the same strongly 

connected component as an existential node over 𝑦 

and ∃𝑦 precedes ∀𝑥 in the prefix. 

• DQ2-CNF unsatisfiability criterion (2’): 

a universal node over 𝑥 is in the same strongly 

connected component as an existential node over 𝑦 

and 𝑦 does not depend on 𝑥. 



Generalized HORN 1/3 
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For DQCNF formulas with free variables, we split each clause 

𝜙𝑖 into a bound part 𝜙𝑖
𝑏(𝑣1, … , 𝑣𝑛) and a free part 𝜙𝑖

𝑓
(𝑧1, … , 𝑧𝑟)  

(both may be empty): 

Φ 𝑧1, … , 𝑧𝑟 = 𝑄1𝑣1…𝑄𝑛𝑣𝑛 ∧𝑖 𝜙𝑖
𝑏(𝑣1, … , 𝑣𝑛) ∨ 𝜙𝑖

𝑓
(𝑧1, … , 𝑧𝑟)  

Then DQHORNb is the subclass of DQCNF formulas with free 

variables where 

• 𝑄1𝑣1…𝑄𝑛𝑣𝑛 ∧𝑖 𝜙𝑖
𝑏(𝑣1, … , 𝑣𝑛) is a formula in DQHORN, and 

• each 𝜙𝑖
𝑓
(𝑧1, … , 𝑧𝑟) is an arbitrary clause over free variables. 



Generalized HORN 2/3 

For every Φ ∈ DQHORNb with ∀  universal quantifiers, 

there exists a logically equivalent HORNb formula of 

quadratic length 𝑂(|∀| ⋅ Φ ) 

which can be computed also in time 𝑂(|∀| ⋅ Φ ). 

[Bubeck, 2010] 

That means DQHORNb satisfiability is NP-complete. 

Similarly, a transformation in time 𝑂(|∀|2 ⋅ Φ ) is 

possible from DQ2-CNFb to 2-CNFb. 

[Bubeck / Kleine Büning, 2010] 
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Generalized HORN 3/3 

Idea for the DQHORNb to HORNb transformation: 

Model functions for closed DQHORN can be written as 

intersection of individual assignments for cases with 

at most one universal being zero. 

 

 

 

 

This allows a simultaneous expansion of all universals 

with at most one universal being zero in each copy. 
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We only need 

to know these 

values 

 partial model 



Conclusion 

Section 5 



Conclusion 

• DQBF corresponds to three-player games with 

1 universal versus 2 existential players. 

Dependencies make sure that the existential players 

do not communicate. 

• DQBF allows encodings which can reuse space. 

• Dependency quantification seems significantly less 

powerful under CNF matrices with further restrictions 

(HORN, 2-CNF), 

even if the restrictions apply only to bound variables. 
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Open Questions 

• Universal expansion can be generalized to DQBF. 

What about Q-resolution for DQBF? 

• Are there other interesting DQBF subclasses? 

• How to solve DQBF in practice? 
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The End 

Oberseminar THI 


