
A New 3-CNF Transformation
by Parallel-Serial Graphs 1

Uwe Bubeck ∗ , Hans Kleine Büning

University of Paderborn, Computer Science Institute, 33098 Paderborn, Germany

Abstract

For propositional formulas we present a new transformation into satisfiability equiv-
alent 3-CNF formulas of linear length. The main idea is to represent formulas as
parallel-serial graphs. This is a subclass of directed acyclic multigraphs where the
edges are labeled with literals and the AND operation (respectively, the OR opera-
tion) is expressed as parallel (respectively, serial) connection.

Key words: algorithms, propositional logic, satisfiability, conjunctive normal form

1 Introduction

Proof systems and satisfiability algorithms for propositional formulas have of-
ten been designed specifically for formulas in conjunctive normal form (CNF).
Transforming an arbitrary propositional formula into a logically equivalent
CNF formula is very space consuming. This can be avoided by providing only
a satisfiability equivalent formula, which is sufficient for most applications.
Recall that logical equivalence α ≈ β requires that α and β evaluate to the
same truth value for each assignment to the variables, whereas satisfiability
equivalence α ≈sat β only needs α being satisfiable if and only if β is satisfiable.

The transformation of a propositional formula φ into a satisfiability equivalent
CNF formula φ′ usually involves significant changes to the structure of φ
and the addition of new auxiliary variables. In this paper, we present a new
transformation that naturally preserves the structure of the input formula.

∗ Corresponding author: phone +49 5251 603361, fax +49 5251 603338
Email addresses: bubeck@upb.de (Uwe Bubeck), kbcsl@upb.de (Hans Kleine

Büning).
1 Supported by the German Research Foundation (DFG), grant KL 529 / QBF.

Postprint, Information Processing Letters 109(7), 2009, c©Elsevier

At the same time, it requires less auxiliary variables than existing approaches
and produces no clauses that contain only such new variables. This is not
only beneficial to satisfiability solvers or proof systems, but the structure-
preserving graph representation on which the transformation is based also
provides a new way of proving structural properties of formulas. In addition,
the graphs allow a comprehensible visualization of the algorithm and illustrate
a close relationship between exponential CNF transformation by distributing
terms and linear CNF transformation with auxiliary variables.

Among existing CNF transformations, the Tseitin procedure [5] is one of the
best known. Given a formula in negation normal form (NNF), the procedure
replaces any subformula α∨(β∧σ) with (α∨x)∧(¬x∨β)∧(¬x∨σ) for a new
variable x. This can be understood as introducing an abbreviation x↔ (β∧σ),
which can be simplified to x → (β ∧ σ) [4]. The process continues as long as
such subformulas exist. The resulting formula is satisfiable if and only if the
initial formula is satisfiable, so we have φ ≈sat φ′, and it can be shown that
the length of φ′ (denoted as |φ′|) is linear in the length of φ.

These ideas can be adapted in a straightforward way to quantified Boolean
formulas, an extension of propositional logic with quantifiers over propositional
variables [2,3]. In general, quantified Boolean formulas have the form Φ = Qφ
with a quantifier prefix Q and a propositional matrix φ, but in this paper, we
only consider existentially quantified formulas Φ = ∃φ. Their semantics is very
similar to propositional formulas, because ∃y φ(y) is satisfiable if and only if
φ(0) is satisfiable or φ(1) is satisfiable. By definition, two quantified Boolean
formulas Φ and Ψ are logically equivalent (Φ ≈ Ψ) if and only if they evaluate
to the same truth value for each truth assignment to the unquantified (free)
variables, in contrast to the propositional case where all variables are taken into
consideration. This allows us to achieve full logical equivalence through the
Tseitin procedure: let φ be the initial propositional formula and φ′ the output
of the Tseitin procedure with newly introduced variables x1, . . . , xn. Then it
holds that φ ≈ ∃x1 . . . ∃xn φ′. The advantage of this quantified notation is
that it becomes immediately clear which variables are the auxiliary variables.

A different approach to CNF transformation is based on the representation of
formulas as circuits over {∧,∨,¬}. Such a circuit is a directed acyclic graph
where the nodes are labeled with ∧,∨, or ¬. It has some source nodes labeled
with literals as inputs and exactly one outgoing edge (the sink) to provide an
output. Furthermore, we assume that the circuits are in negation normal form
(sometimes also called standard form), which means the inputs can be literals
x or ¬x, but the negation ¬ may not occur as an inner node.
It is well-known [1] that we can associate to any such circuit a satisfiability
equivalent formula in 3-CNF whose length is linear in the length of the circuit:
First, we label each edge with a new variable. Say the set of these variables is
{y1, . . . , yn, y}, where y denotes the sink.

2

For a ∧-node yi−→ ∧ yj−→ =
yr−→, we obtain the clauses yi → yr and yj → yr.

For a ∨-node yi−→ ∨ yj−→ =
yr−→, we obtain the clause (yi ∧ yj)→ yr.

For an input edge L yi−→ with a literal L, we add the clause L ∨ yi.
Finally, the sink y−→ is represented by the unit clause ¬y.
The result is the conjunction of these clauses. Notice that the original literals
only occur in one clause each, and all other clauses are purely made of new
variables. A lot of these are needed: one for each edge. The graph representa-
tion that we now present avoids these problems and preserves more structural
information by labeling edges with original literals from the input formula.

2 Parallel-Serial Graphs

With parallel-serial graphs (PS-graphs), we denote a restricted class of directed
acyclic multigraphs. They have only one source and one sink and edges labeled
with formulas or literals. We write (x→ y : α) for an edge from x to y labeled
with α. PS-graphs are defined inductively by parallel and serial connections.

Definition 1 (PS-graph)

(1) Let V = {x, y} be a set of nodes, α a label and E = {(x→ y : α)}.
Then G = (V,E) is a PS-graph.

(2) Let G1 = (V1, E1) and G2 = (V2, E2) be PS-graphs that share the same
source x and sink y, with V1 \ {x, y} ∩ V2 \ {x, y} being empty.
Then G = (V1 ∪ V2, E1 ∪ E2) is a PS-graph.

(3) Let G1 = (V1, E1) and G2 = (V2, E2) be PS-graphs, such that z is both
the sink of G1 and the source of G2 and V1 \ {z} ∩ V2 \ {z} is empty.
Then G = (V1 ∪ V2, E1 ∪ E2) is a PS-graph.

In the definition, we require disjoint sets of vertices to avoid cycles and “cross-
ings” of connections. Examples of well-formed PS-graphs are shown in Figure 1
on page 7.

The semantics of PS-graphs is given implicitly by associating with every PS-
graph G a propositional formula ΦG. It encodes every edge (u → w : α) as a
clause (u → w) ∨ α ≈ ¬u ∨ w ∨ α, and two additional unit clauses represent
source and sink.

Definition 2 (PS-graph semantics)

Let G = (V,E) be a PS-graph with source x, sink y and inner nodes z =
z1, ..., zt. Then we associate with G the following formula:

ΦG = ∃x∃y∃z1...∃zt x ∧ ¬y ∧
∧

(u→w:α)∈E
((u→ w) ∨ α)

3

Interestingly, this semantics definition coincides with two different intuitive
interpretations of PS-graphs. The first one considers all possible paths from
the source to the sink and takes the disjunction of labels on such a path.

Theorem 3 (Path semantics)

Let G = (V,E) be a PS-graph with source x and sink y, and let ΦG be the
associated formula. Then

ΦG ≈
∧

p path from x to y

 ∨
(u→w:α)∈p

α

 .

Proof:
Let p = (x → z1 : α1), (z1 → z2 : α2), ..., (zt−1 → zt : αt), (zt → y : αt+1)
be a path from the source x to the sink y. Then ΦG contains the clauses
x,¬x ∨ z1 ∨ α1,¬z1 ∨ z2 ∨ α2, . . . ,¬zt−1 ∨ zt ∨ αt,¬zt ∨ y ∨ αt+1,¬y. Omitting
the labels αi leads to an unsatisfiable formula. Therefore, this set of clauses
implies the clause α1 ∨ . . .∨ αt+1. That shows the direction from left to right.
For the other direction, let v be a satisfying truth assignment to the right
hand formula. We can also apply this truth assignment to the free variables of
ΦG and simplify the resulting formula Φ∗G. Suppose Φ∗G is unsatisfiable. Then
there must be a chain x → z1, z1 → z2, . . . , zt−1 → zt, zt → y in Φ∗G, since ¬y
is the only negative clause. But that chain represents a path from the source x
to the sink y in contradiction to our assumption that the right hand formula
is true. 2

Another intuitive interpretation of PS-graphs clarifies the difference between
parallel and serial connections: parallel connections in the PS-graph can be
considered as AND operations, and serial connections can be understood as
OR operations.

Theorem 4 (AND-OR semantics)

Let G = (V1 ∪ V2, E1 ∪ E2) be a PS-graph with source x and sink y that is
composed of two smaller PS-graphs G1 = (V1, E1) and G2 = (V2, E2) with
associated formulas ΦG1 = ∃φG1 and ΦG2 = ∃φG2.

(1) Let G1 and G2 be arranged in a parallel connection where both share the
same source x and sink y, with V1 \ {x, y} ∩ V2 \ {x, y} being empty, as
in Definition 1 (2).
Then ΦG ≈ ∃ φG1 ∧ φG2.

(2) Let G1 and G2 be arranged in a serial connection where z is both the
sink of G1 and the source of G2 and V1 \ {z} ∩ V2 \ {z} is empty, as in
Definition 1 (3).
Then ΦG ≈ ∃ φG1 ∨ φG2.

4

Proof:

(1) In ΦG, we can duplicate the unit clauses for source and sink and partition
the edges into two disjoint sets:

ΦG = ∃x∃y∃z x ∧ ¬y ∧ ∧(u→w:α)∈E((u→ w) ∨ α)

≈ ∃x∃y∃z x ∧ ¬y ∧ ∧(u→w:α)∈E1
((u→ w) ∨ α)

∧ x ∧ ¬y ∧ ∧(u→w:α)∈E2
((u→ w) ∨ α)

≈ ∃x∃y∃z φG1 ∧ φG2

(2) According to Theorem 3, we have ΦG ≈
∧
p path from x to y

(∨
(u→w:α)∈p α

)
.

The construction implies that every path from x to y must pass through
z. Consider one single path from x to z. If ΦG is true, one of the labels
on this path is satisfied, or every path from z to y has one satisfied
label. Since this applies to each path from x to z, we have the following
implication:

ΦG ⇒

 ∧
p path from x to z

 ∨
(u→w:α)∈p

α

∨
 ∧
p path from z to y

 ∨
(u→w:α)∈p

α


The implication in the other direction is obvious: if all paths in one half of
the graph are satisfiable then all paths in the whole graph are satisfiable.
Thus it follows that both formulas are equivalent. Once again applying
Theorem 3, the right hand formula is equivalent to ΦG1 ∨ΦG2 . The claim
follows after moving all quantifiers to the front (notice that (∃v φG1) ∨
(∃v φG2) ≈ ∃v φG1 ∨ φG2). 2

This theorem covers cases (2) and (3) of the inductive definition of PS-graphs.
For the remaining case (1) of Definition 1, it is easy to see that a graph with
only one edge (x → y : α) simply encodes α, because ΦG = ∃x∃y x ∧ ¬y ∧
(¬x ∨ y ∨ α) ≈ α.

3 3-CNF Transformation and Properties

Our approach to CNF transformation is based on the following idea: given
an input formula ψ in NNF, we construct a PS-graph G. From G, we can
then extract an associated existentially quantified formula ΦG = ∃φ, where
φ is in 3-CNF and ΦG ≈ ψ. According to Definition 2, ΦG encodes edges
(u → w : α) of a PS-graph into clauses ¬u ∨ w ∨ α. In order for these to be
in 3-CNF, the labels α must be literals, so we need a way to map a formula
ψ to an equivalent PS-graph G = ps(ψ) that is only labeled with literals. It
turns out that Theorem 4 is not only useful for interpreting a PS-graph, but

5

it can also help us build such a graph, because it establishes a correspondence
between the propositional operators AND and OR and the structure of the
graph. The idea of our top-down approach is as follows: we start with one
single edge that is labeled with the whole formula ψ. Depending on whether
ψ is a conjunction or a disjunction of subformulas α1 and α2, we then split
this edge into two parallel or serial edges labeled with α1 and α2. The process
continues on the newly created edges until all labels are literals. From G,
we can then extract the resulting 3-CNF formula ΦG. Listing 1 provides the
complete transformation procedure.

Listing 1. Algorithm PS-transform

Input propositional formula ψ in NNF

Initialize G := (V,E) := ({x, y}, {(x→ y : ψ)})
// Graph with new nodes x and y and one edge labeled with ψ

while G has an edge (u→ w : α) with a non−literal formula α {
if α = α1 ∧ α2

E := E \ {(u→ w : α)} ∪ {u→ w : α1, u→ w : α2}
else if α = α1 ∨ α2

E := E \ {(u→ w : α)} ∪ {u→ zi : α1, zi → w : α2}
V := V ∪ {zi} for a new variable zi

}

ΦG := ∃x∃y∃z1...∃zt x ∧ ¬y ∧
∧

(u→w:α)∈E(¬u ∨ w ∨ α)

Output PS−graph G with associated 3−CNF formula ΦG ≈ ψ

Consider the example ψ = ¬a ∧ ((b ∧ ¬c) ∨ (d ∧ e)). Figure 1 shows the
construction of G, and we obtain the following associated formula:

ΦG = ∃x∃y∃z x ∧ ¬y ∧ (¬x ∨ y ∨ ¬a) ∧ (¬x ∨ z ∨ b) ∧ (¬x ∨ z ∨ ¬c)
∧(¬z ∨ y ∨ d) ∧ (¬z ∨ y ∨ e)

The unit clauses for source and sink can always be propagated. Then our
example requires only one helper variable:

ΦG = ∃z ¬a ∧ (z ∨ b) ∧ (z ∨ ¬c) ∧ (¬z ∨ d) ∧ (¬z ∨ e)

On the other hand, the Tseitin procedure needs two quantified variables to
deal with this example:

ψ ≈ ∃x ¬a ∧ (x ∨ (d ∧ e)) ∧ (¬x ∨ b) ∧ (¬x ∨ ¬c)
≈ ∃x∃y ¬a ∧ (x ∨ y) ∧ (¬x ∨ b) ∧ (¬x ∨ ¬c) ∧ (¬y ∨ d) ∧ (¬y ∨ e)

6

yx

¬a

zb∧¬c d∧e

yx

¬a

z¬c

b d

e

yx

¬a

(b∧¬c) ∨ (d∧e)

yx
¬a ∧ ((b∧¬c) ∨ (d∧e))

1.

2.

3.

4.

Figure 1. Construction of PS-graph for ψ = ¬a ∧ ((b ∧ ¬c) ∨ (d ∧ e))

Theorem 5 (Correctness and linearity)

Let ψ be a propositional formula in NNF which is mapped by the algorithm
PS-transform to the PS-graph G = ps(ψ) with associated formula ΦG. Then
we have ψ ≈ ΦG and |ΦG| = 3 |ψ|+ 2.

Proof:
The correctness of PS-transform, i.e. ψ ≈ ΦG, follows directly from Theorem 4
and the subsequent remark about single-edge graphs.
To verify that the associated formula ΦG has linear length, notice that the
number of edges in G equals the number of occurrences of literals in the input
formula ψ, which is commonly defined to be the length of ψ. Moreover, ΦG has
one 3-clause for each edge in G, plus two unit clauses for source and sink. 2

The algorithm can be modified to produce CNF formulas with arbitrary clause
length by labeling edges not only with literals, but also with disjunctions of
literals. That means we only have to split edges (u → w : α) if α is neither
a literal nor a disjunction of literals. Or from a bottom-up viewpoint, we can
merge two single edges in a serial connection, so that G has no inner nodes for
which both indegree and outdegree are 1. With longer clauses, less additional
existentially quantified variables are needed: one for each disjunction in the
formula tree that has a conjunction as child. This is less than or equal to
the number of additional variables that the Tseitin algorithm needs (one for
each conjunction that is child of a disjunction). The circuit-based approach
that was presented in the introduction clearly needs more additional variables
(one for each edge in the circuit). Another advantage of PS-transform is that
it guarantees every clause in ΦG to have at least one literal of the original
formula. That should later provide more guidance to solvers or proof systems
and avoid extensive reasoning only on helper variables.

Due to the direct correspondence between the propositional connectives and
the graph layout, the graph G = ps(ψ) quite naturally represents the struc-
ture of the input formula ψ. This is shown by the interesting observation that
G encodes both the linear and the exponential CNF transformation of ψ. By

7

Theorem 3, ψ is equivalent to a CNF that is obtained by adding for every pos-
sible path from the source to the sink a clause which contains the disjunction of
labels on such a path. This CNF is the result of the application of the distribu-
tivity law to ψ. Consider the example from Figure 1. The possible paths are
p1 = (x→ y : ¬a), p2 = (x→ z : b), (z → y : d), p3 = (x→ z : b), (z → y : e),
p4 = (x → z : ¬c), (z → y : d) and p5 = (x → z : ¬c), (z → y : e). Then the
resulting formula is ¬a ∧ (b ∨ d) ∧ (b ∨ e) ∧ (¬c ∨ d) ∧ (¬c ∨ e). We can also
observe that if a graph G = ps(ψ) has t possible paths from the source to the
sink then ψ is equivalent to a CNF of at most t clauses.

4 Conclusion and Future Work

We have introduced PS-graphs as a new representation of propositional formu-
las that naturally preserves their structure. This leads to a novel linear 3-CNF
transformation which is easy to understand and visualize and nicely illustrates
the relationship to exponential CNF transformation by the distributivity law.

An interesting topic for future work is the expressiveness of PS-graphs and
their generalization to arbitrary directed acyclic multigraphs with multiple
sources and sinks, called m-DAGs. When assigning them formulas as in Defi-
nition 2 and Theorem 3, are they as expressive as circuits with arbitrary fanout
where internal nodes may have more than one outgoing edge? We can show
that for every m-DAG, there exists a linear-size circuit with fanout greater
than 1 which encodes an equivalent formula. But it is unknown whether the
direction from a circuit with arbitrary fanout to a poly-size m-DAG also holds.

References

[1] M. Bauer, D. Brand, M. Fischer, A. Meyer, M. Paterson, A Note on Disjunctive
Form Tautologies, SIGACT Newss, 5(2):17–20, 1973.

[2] H. Kleine Büning, T. Lettmann, Propositional Logic: Deduction and Algorithms,
Cambridge University Press, Cambridge, UK, 1999.

[3] A. Meyer, L. Stockmeyer, Word Problems Requiring Exponential Time,
Preliminary Report, Proc. 5th ACM Symp. on Theory of Computing (STOC’73),
pp. 1–9, 1973.

[4] D. Plaisted, S. Greenbaum, A Structure-preserving Clause Form Translation,
Journal of Symbolic Computation, 2(3):293–304, 1986.

[5] G. Tseitin, On the Complexity of Derivation in Propositional Calculus, In A.
Silenko (ed.): Studies in Constructive Mathematics and Mathematical Logic, Part
II, pp. 115–125, 1970.

8

	Introduction
	Parallel-Serial Graphs
	3-CNF Transformation and Properties
	Conclusion and Future Work
	References

