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Abstract. We consider the extension of Boolean circuits to quantified
Boolean circuits by adding universal and existential quantifier nodes with
semantics adopted from quantified Boolean formulas (QBF). The con-
cept allows not only prenex representations of the form ∀x1∃y1...∀xn∃yn c
where c is an ordinary Boolean circuit with inputs x1, ..., xn, y1, ..., yn.
We also consider more general non-prenex normal forms with quan-
tifiers inside the circuit as in non-prenex QBF, including circuits in
which an input variable may occur both free and bound. We discuss the
expressive power of these classes of circuits and establish polynomial-
time equivalence-preserving transformations between many of them. Ad-
ditional polynomial-time transformations show that various classes of
quantified circuits have the same expressive power as quantified Boolean
formulas and Boolean functions represented as finite sequences of nested
definitions (NBF). In particular, universal quantification can be simu-
lated efficiently by circuits containing only existential quantifiers if over-
lapping scopes of variables are allowed.

1 Introduction

Boolean circuits are a powerful concept to store propositional formulas. On the
one hand, they can suitably represent important structural information, and on
the other hand, they allow sharing of common subexpressions. For example, a
formula like (α1∨β1)∧(α1∨β2)∧(α2∨β1)∧(α2∨β2) with arbitrary subformulas
α1, α2, β1, β2 can be represented by a circuit in which the value of each of those
subformulas is computed only once and then reused multiple times by fanout.
Fig. 1 shows a simple circuit for the formula (¬x ∨ (x ∧ ¬y)) ∧ ((x ∧ ¬y) ∨ z)
in which (x ∧ ¬y) is shared. Under favorable circumstances, sharing can lead to
significantly shorter encodings of formulas as circuits. Accordingly, circuits have
been used successfully also for SAT and QBF solvers, e.g. in [9, 10, 11, 13].

Similar to other representations like [14], Boolean circuits can be extended by
allowing quantifiers. That is, a circuit can contain universal and existential quan-
tifier nodes in addition to propositional logic gates. Typically, existing work on
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Fig. 1: Circuit in negation normal form

quantified circuits, e.g. [2], has focused on decision problems for circuits in prenex
form ∀x1∃y1...∀xn∃yn c(x1, y1, ..., xn, yn), where c is an ordinary quantifier-free
Boolean circuit and quantification is applied subsequently on its input variables.
In this paper, we want to investigate the expressive power of quantified cir-
cuits not only in prenex form, but also in arbitrary negation normal form where
quantifiers are allowed inside the circuit. The most general case that we con-
sider covers circuits in which an input variable may occur both free and bound.
In QBF, it is easy to obtain unique variable names and prenex representations
by renaming bound variables. We will see that such renamings are problematic
for quantified circuits due to the sharing of subcircuits, but this paper shows
that there still exist efficient transformations between many classes of quanti-
fied circuits. Another main contribution is the interesting result that universal
quantification can be simulated in linear time by negation normal form circuits
containing only existential quantifiers if overlapping variable scopes are allowed.
For QBF, this appears to be possible only for special classes such as quantified
Horn or 2-CNF formulas [3, 5], unless the polynomial hierarchy collapses.

2 Boolean Circuits and Propositional Formulas

We begin our discussion with a brief review of basic relationships between cir-
cuits and propositional formulas. A Boolean circuit is a directed acyclic graph
with one outgoing edge (the sink) and multiple input nodes labeled with Boolean
variables. The other nodes are AND-, OR-, and NOT-gates that each have two
(AND and OR) or one (NOT) incoming edges and an arbitrary number of out-
going edges. We let C be the class of circuits in negation normal form (NNF),
that means circuits in which the inner nodes are only AND- and OR-gates and
the inputs are variables x and negated variables ¬x. Fig. 1 shows an example
of a circuit in NNF. The length or size of a circuit is the number of gates, in-
cluding negations associated with input variables. By the laws of De Morgan
and the elimination of double negations, any circuit can be transformed in linear
time in NNF, although in the worst case the size of the circuit might double.
Subsequently, we consider only circuits in NNF, because we later want to avoid
quantifier nodes being negated. The negation of a quantifier essentially inverts
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its meaning, which is in particular problematic in combination with subcircuit
sharing, because one quantifier might then be shared in its original and in its
negated form, so a variable would be existentially and universally quantified
in the same subcircuit. For clarity, we sometimes use the equivalence operator
(written as =). But since operations such as equivalence, and also implication or
XOR, implicitly contain negation and therefore cause the same problems with
quantifiers, we consider such operations only as abbreviations which must be
expanded in the actual representation of the circuit.

For propositional formulas, we allow the same operators ∧ (AND), ∨ (OR)
and ¬ (NOT) and propositional variables. Similar to circuits, a formula is in
negation normal form if the negation symbols occur only directly in front of
variables. The length of a formula is the number of variable occurrences.

Definition 1. (Propositional Formulas and Circuits)
1. BF := {φ | φ is propositional formula in negation normal form}
2. C := {c | c is a Boolean circuit in negation normal form}

Let α and β be two formulas or two circuits or a mixed pair of one formula and
one circuit, and let z1, ..., zr be the union of all variables which occur in α or
β inside a formula or in a circuit input. Then α and β are (logically) equiva-
lent, in symbols α ≈ β, if and only if for every truth assignment to z1, ..., zr it
holds that α and β evaluate to the same truth value after substituting the as-
signed truth values for z1, ..., zr. This is significantly stronger than satisfiability
equivalence, which requires that if one of the formulas or circuits is satisfied by
some assignment to z1, ..., zr, the other one must also have some (possibly dif-
ferent) satisfying assignment to z1, ..., zr. Satisfiability equivalence is sometimes
too weak: for example, replacing a term inside a larger formula with a different
term is in general only sound if both terms are logically equivalent.

For circuit or formula classes A and B, we write A ≤p B to express that
there are polynomial-time transformations from A to B. That means A ≤p B if
and only if there is a poly-time mapping T , such that T (a) ∈ B and T (a) ≈ a
for each a ∈ A. A =p B is an abbreviation for A ≤p B and B ≤p A.

There is obviously a close relationship between Boolean circuits and propo-
sitional formulas: Every propositional formula can be considered as a circuit
with fanout 1, and vice versa. Fanout 1 means that every node has exactly one
outgoing edge and there is no sharing of subcircuits. On the other hand, an ar-
bitrary Boolean circuit can be encoded as a formula when we label the edges of
the circuit with new auxiliary variables and describe the gates by propositional
clauses over these auxiliary variables [1]. For example, we obtain y = x1 ∧ x2
for an AND-node having incoming edges labeled with x1 and x2 and output
edges labeled with y. This can be performed in linear time, but the resulting
formula is in general only satisfiability equivalent to the circuit, because adding
new variables typically destroys logical equivalence. To achieve full logical equiv-
alence, the auxiliary variables must be bound by existential quantifiers, which
are formally introduced in the following section.
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3 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) extend propositional logic with universal (∀)
and existential (∃) quantifiers over variables. For example, ∀x(¬x∨(∃y(y∨x∨z)))
is a quantified Boolean formula. Variables on which a quantifier is applied are
called bound variables, and variables which are not bound by a quantifier are
free. In the example, x and y are bound, and z is free. ∀x φ(x) is defined to be
true if and only if φ(0) is true and φ(1) is true, and ∃y φ(y) means that φ(0) or
φ(1) is true. To save parentheses, we assume that the logical connectives have a
higher binding priority than the quantifiers, so we could also write the previous
example as ∀x ¬x ∨ (∃y y ∨ x ∨ z). As for propositional formulas, the length
of a quantified Boolean formula is the number of variable occurrences, but now
including occurrences with quantifiers. Accordingly, the example has length 6.

A formula Φ(z1, ..., zr) with free variables z1, ..., zr is satisfiable if and only if
there exists a truth assignment τ to the free variables such that Φ(τ(z1), ..., τ(zr))
is true. Here, Φ(τ(z1), ..., τ(zr)) denotes the substitution of the truth values in
τ for the free variables in Φ. Two quantified Boolean formulas Φ(z1, ..., zr) and
Ψ(w1, ..., ws) with free variables z1, ..., zr and w1, ..., ws are logically equivalent if
and only if for every truth assignment τ to the free variables z1, ..., zr, w1, ..., ws

both formulas evaluate to the same truth value. This means that the bound
variables are not directly considered when checking for logical equivalence, which
makes them local to the respective formula. The ability to introduce new local
variables without losing full equivalence is a powerful advantage over ordinary
propositional calculus. A propositional formula can be considered as a special
case of a quantified Boolean formula in which all variables are free. Similarly,
all input variables in a Boolean circuit can be treated as free variables. Logical
equivalence between QBF formulas is then a generalization of the equivalence
criterion presented in the previous section and can naturally be extended to
mixed pairs from all three representations.

Negation normal form is defined for QBF as it is for propositional formulas
and can be achieved with the additional equivalences ¬(∀x Φ) ≈ ∃x¬Φ and
¬(∃x Φ) ≈ ∀x¬Φ. A QBF formula Φ is in prenex form if Φ = Q1v1...Qkvk φ with
quantifiers Qi ∈ {∀,∃} and a propositional formula φ. We call Q := Q1v1...Qkvk
the prefix and φ the matrix of Φ.

Definition 2. (Quantified Boolean Formulas)
1. QBF := {Φ | Φ is a quantified Boolean formula in negation normal form}
2. ∃BF := {Φ | Φ ∈ QBF and Φ contains only existential quantifiers}
3. pQBF := {Φ | Φ ∈ QBF in prenex form}

An arbitrary QBF can be transformed in linear time into prenex form. The result
is in general not unique, and different prenexing strategies have been widely
investigated, e.g. in [8]. Following the notation ≤p and =p, we write ≤linear and
=linear for linear-time transformations.

Proposition 1. QBF =linear pQBF
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4 Nested Boolean Functions

Before we introduce quantified circuits, we briefly consider another representa-
tion of Boolean functions which appears rather different at first glance, but will
soon turn out to be closely related to both quantified circuits and QBF. Every
Boolean function can be defined by a suitable set of initial functions, for example
AND, OR and NOT, and a composition of these functions. Instead of a fixed
set of starting functions, we can also allow arbitrary propositional formulas as
starting functions. In order to illustrate the idea, we present a short example:
Let f1(x, y) := x ∨ ¬y and f2(z, w) := z ∧ w be two initial functions, and let
f3(x1, x2) := f2(0, f1(x1, x2)) and
f4(x, y, z) := f2(f3(x, z), f1(z, y)) be compound functions.
Then f4(x, y, z) is equivalent to the propositional formula (0∧(x∨¬z))∧(z∨¬y).
Such definition schemes for Boolean functions have been introduced in [6] as
Boolean Programs. But this name is also used for different concepts in other
fields. To avoid confusion, we use the name Nested Boolean Functions (NBF).

Definition 3. A nested Boolean function (NBF) is a finite sequence D(fk) =
(f1, ..., fk) of definitions of Boolean functions. For fixed t ∈ {1, ..., k}, it contains
– initial functions f1, ..., ft, which are each defined by fi(xi) := αi(x

i) for a
propositional formula αi over variables xi := (xi,1, ..., xi,ni), and

– compound functions ft+1, ..., fk of the form fi(x
i) := fj0(fj1(xi

1), ..., fjr (xi
r))

for previously defined functions fj0 , ..., fjr ∈ {f0, ..., fi−1}. The arguments
xi
1, ...,x

i
r are tuples containing variables in xi or Boolean constants, such

that the arity of xi
l matches the arity of fjl and r is the arity of fj0 .

We call fk the defined Boolean function. The length of a NBF D(fk) is |D(fk)| :=
|f1|+...+|fk|, where |fi| is the total number of occurrences of constants, variables
and function symbols on the right hand side of the defining equation of fi.

A Boolean circuit c(x) with input variables x can be represented as a finite
sequence of definitions D(fc(x)) ∈ NBF with c(x) ≈ fc(x). The initial functions
are fid(x) := x, f¬(x) := ¬x, f∧(x, y) := x∧ y and f∨(x, y) := x∨ y. Bottom-up,
we assign a function to each edge in the circuit. For an input x or ¬x, we simply
use fid(x) or f¬(x). For the output edges of an AND-node over incoming edges
associated with g(x) and h(y), we choose f(x∩y) := f∧(g(x), h(y)). Here, x∩y
is the tuple of all variables occurring in g and h, without multiple occurrences
and in arbitrary order. Analogously, we assign functions to the OR-nodes and
NOT-nodes (for non-NNF circuits). It is not difficult to see that the function
associated with the outgoing edge of the circuit is equivalent to the circuit.
We have already mentioned a linear-time encoding of circuits as existentially
quantified Boolean formulas (Section 2). Now, the number of function symbols
in the resulting NBF is again linear in the size of the circuit, but the length of
the NBF also includes occurrences of variables as arguments. We obtain a time
and space bound of O(|x| · |c(x)|), where |x| is the number of input variables and
|c(x)| is the circuit size. Subsequently, we use the term v-linear for O(|v| · |A|),
where |A| is the length of an expression A and |v| the number of variables in A.
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Proposition 2. C ≤v-linear NBF

For an arbitrary NBF D(fk) = (f1, ..., fk), the problem of deciding whether
fk(a1, ..., ank

) = 1 for given arguments a1, ..., ank
∈ {0, 1} has been shown to be

PSPACE-complete [6]. This immediately implies also the PSPACE-completeness
of the NBF satisfiability problem, i.e. the problem of determining whether there
exists a choice of arguments for which the defined function is true. This PSPACE-
completeness suggests a close relationship to quantified Boolean formulas. In
fact, it is not difficult to encode QBF formulas as NBFs. For example, let Φ(z) =
∀x∃y φ(x, y, z) be a pQBF formula with matrix φ and free variables z. First, we
define the initial functions f∧(x1, x2) := x1 ∧ x2, f∨(x1, x2) := x1 ∨ x2 and
f1(x, y, z) := φ. Then we simulate the existential quantifier by means of the
∨ function, using the equivalence ∃y φ(x, y, z) ≈ φ(x, 0, z)∨φ(x, 1, z). This leads
to the definition f2(x, z) := f∨(f1(x, 0, z), f1(x, 1, z)), and analogously f3(z) :=
f∧(f2(0, z), f2(1, z)) to simulate the universal quantifier by the ∧ function. By
construction, we obtain f3(z) ≈ Φ(z). Because of the need to count the variables
in the arguments, the length of the resulting definition is in general not linear
in the length of the formula, but only v-linear.

The inverse direction from NBF to QBF is less intuitive. By a general argu-
ment, every Boolean function defined by a NBF can be simulated by a poly-space
Turing machine [6]. And a poly-space Turing machine can be encoded as a QBF
of polynomial length [12]. Recently, a linear-time equivalence-preserving trans-
formation from NBF to pQBF has been found [4].

Lemma 1. NBF ≤linear pQBF,QBF and pQBF,QBF ≤v-linear NBF.

Whether there exists a linear-time transformation from (p)QBF to NBF is an
open question and closely related to the question whether for circuits there is a
linear-time transformation to NBF.

5 Quantified Circuits

Similar to quantified Boolean formulas being an extension of propositional for-
mulas, we now introduce quantified circuits as Boolean circuits which may in
addition contain nodes labeled with ∀x or ∃x for a propositional variable x.
Each of these quantifier nodes has exactly one incoming edge and an arbitrary
number of outgoing edges. Examples of quantified circuits are given in Fig. 2.
We say that a variable x occurs bound in a quantified circuit if there is a path
from the input x or ¬x to the sink which passes through a quantifier node ∃x
or ∀x. On the other hand, x occurs free if there is a path from x or ¬x to the
sink which contains no node ∃x or ∀x. In the left circuit in Fig. 2, x is bound, z
is free, and y occurs free and bound.

We borrow the semantics of quantified circuits from quantified Boolean for-
mulas by mapping to each edge of a quantified circuit a QBF formula in the
following bottom-up manner: The formula for an input node x or ¬x is x or ¬x
itself. The output edge of an AND-node over incoming edges associated with
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Fig. 2: Quantified circuits in non-prenex form (left) and prenex form (right)

formulas α(x) and β(y) is then labeled with α(x) ∧ β(y). OR- and NOT-nodes
are treated analogously. When we encounter a quantifier node ∃x that has an
incoming edge labeled with α(x,y), we label its outgoing edges with ∃xα(x,y),
and analogously ∀xα(x,y) for nodes ∀x. Finally, the interpretation of the cir-
cuit is defined as the value of the formula associated with its output when the
variables are assigned as determined by the circuit inputs. For example, the left
circuit in Fig. 2 is equivalent to ∀x ((z ∨ (¬x ∧ y)) ∧ (∃y(¬x ∧ y))).

This semantics means that when we ignore the direction of the edges, a quan-
tified circuit can be understood as the extension of a syntax tree of a quantified
Boolean formula with additional sharing of subformulas. That is also the reason
why we prefer to draw those circuits with the sink on the top.

When we construct the associated QBF formula as in the semantics defini-
tion, it is obvious that the length of the formula can be super-polynomial in
the length (size) of the circuit, since we lose the sharing of subcircuits. It turns
out that this can be avoided easily when we represent the quantified circuit as
NBF. The encoding is the same as the one for ordinary Boolean circuits from
Section 4, with the following extension: For an ∃x node (a ∀x node, respectively)
that has an incoming edge labeled with f(x,y), we define a new function symbol
g(y) := f∨(f(0,y), f(1,y)) (g(y) := f∧(f(0,y), f(1,y)), respectively).

Proposition 3. Quantified Circuits ≤v-linear NBF

5.1 Normal Forms

For QBF, various normal forms are well known. We now define analogous normal
forms for quantified circuits and analyze them in the following subsections.

Definition 4. Let c be a quantified circuit. Then we say:

1. c is in negation normal form (NNF) if each inner node is either an AND-
node, an OR-node or a quantifier node, and the inputs are variables x or
negated variables ¬x. That means only inputs can be negated.
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2. c is in prenex form if every successor node of a quantifier node is a quantifier
node, too. That means quantifiers are only allowed in front of the sink.

3. c is pure if no variable has both bound and free occurrences in c.

The quantified circuits shown earlier in Fig. 2 are both in negation normal form.
The circuit on the left is neither in prenex form nor pure, while the one on the
right is in prenex form and thus also pure. Subsequently, we assume that all
quantified circuits are in negation normal form, unless stated otherwise.

Proposition 4. A quantified circuit c is in negation normal form (in prenex
form, or pure, respectively) if and only if the associated QBF formula is in
negation normal form (in prenex form, or pure, respectively).

In QBF, it is easy to transform NNF formulas into equivalent pure or even
prenex formulas by renaming and shifting of quantifiers. Consider the example
Φ = ∀x ((z ∨ (¬x ∧ y)) ∧ (∃y (¬x ∧ y))) where y occurs free and bound. Then
Φ ≈ ∀x ((z ∨ (¬x∧ y))∧ (∃u (¬x∧ u))) ≈ ∀x∃u ((z ∨ (¬x∧ y))∧ (¬x∧ u)). But
such renamings are problematic for non-prenex quantified circuits due to shared
subcircuits. Consider again the left circuit in Fig. 2. If we rename ∃y into ∃u,
the resulting term (¬x∧u) can no longer be shared with (¬x∧y), which we still
need to keep, because the free occurrence of y cannot be renamed without losing
equivalence. Thus, we need to have two copies of the previously shared subcir-
cuit. In general, this can cause exponential growth. That observation motivates
separate investigations of prenex and non-prenex circuits.

5.2 Quantified Circuits in Prenex Form

Definition 5. (Quantified Circuits in Prenex Form)
1. QC := {c | c is a circuit over ∧,∨,¬,∀ and ∃ in NNF and prenex form}
2. ∃C := {c | c is a circuit over ∧,∨,¬ and ∃ in NNF and prenex form}

Because of the previously mentioned linear transformation of Boolean circuits
into existentially quantified Boolean formulas by labeling edges with auxiliary
variables as in Section 2, we immediately get the following relationships:

Proposition 5. ∃C =linear ∃BF and QC =linear QBF, pQBF.

5.3 Pure Quantified Circuits in Non-Prenex Form

Now, we investigate quantified circuits which are not in prenex form, but still
pure. In the next section, we will also drop the purity restriction.

Definition 6. (Pure Quantified Circuits in Negation Normal Form)
1. C∀,∃ := {c | c is a pure circuit over ∧,∨,¬,∀ and ∃ in NNF}
2. C∃ := {c | c is a pure circuit over ∧,∨,¬ and ∃ in NNF}
In order to discuss the expressive power of C∃, we further refine this class. The
idea is to restrict the number of occurrences of ∃x nodes for a single variable x.
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Definition 7. For k ≥ 1, we let
C∃(k) := {c ∈ C∃ | each variable occurs in at most k ∃ nodes of the pure circuit c}

When k = 1, all ∃ nodes have distinct variable names. Furthermore, no variable
occurs both free and bound, since the circuits are pure. That allows us to move
all ∃ nodes in front of the sink, just like prenexing in QBF. As the circuits are
also in NNF, we obtain an equivalent circuit in ∃C. In the other direction, every
∃C circuit is trivially equivalent to a C∃(1) circuit, because if a prenex circuit has
quantifier nodes with duplicate names, all but the innermost can be dropped.

Proposition 6. C∃(1) =linear ∃C

For k = 2, we shall see that the expressive power jumps to the full power
of quantified circuits. That means C∃(2) circuits can compactly encode uni-
versal quantifiers using only existential quantifiers. This is quite simple if we
waive the NNF requirement and use the equivalence ¬∃xφ ≈ ∀x¬φ. But if
we only consider circuits and QBF formulas in NNF, this is not possible. In
fact, a poly-time simulation of universal quantifiers in negation normal form
QBF formulas would lead to the collapse of the polynomial hierarchy. Accord-
ingly, the following idea is specific to circuits and uses structure sharing by
fanout: It is well known that quantifiers can be expanded, e.g. by the equiva-
lence ∀xα(x,y) ≈ α(0,y) ∧ α(1,y) with some free variables y. Repeated appli-
cation clearly causes exponential growth due to the duplication of α. Unfortu-
nately, sharing by fanout only works for subexpressions which are exactly the
same, but α has different arguments here. Our trick is to use the equivalence
∀xα(x,y) ≈ (∃x(x ∧ α(x,y)) ∧ (∃x(¬x ∧ α(x,y)) instead. Now, we have two
identical occurrences of α(x,y), which can be shared as shown in Fig. 3. By
repeated expansion of universal nodes in this way, any quantified circuit in NNF
can be transformed into a representation that uses only ∃ nodes. Obviously, the
size of the resulting circuit remains linear in the size of the initial circuit.

⇒

∧

x x

∧ ∧

α(x, y)

y ¬x

∃x∃x∀x

x

α(x, y)

y

Fig. 3: ∀-simulation by ∃ nodes and sharing of subcircuits

We can now summarize our expressiveness results in the following theorem.
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Theorem 1. QC =p C∀,∃ =p C∃ =p C∃(2) =p NBF =p QBF =p pQBF

Proof. We show QBF ≤p QC ≤p C∃(2) ≤p C∃ ≤p C∀,∃ ≤p NBF ≤p QBF.

1. QBF ≤p QC according to Proposition 5.
2. QC ≤p C∃(2) by encoding a universal node with two existentials (Fig. 3).
3. C∃(2) ≤p C∃ ≤p C∀,∃: C∃(2) is a subset of C∃, which in turn is a subset of C∀,∃.
4. C∀,∃ ≤p NBF follows from Proposition 3.
5. NBF ≤p QBF by Lemma 1. ut

5.4 Non-Pure Quantified Circuits

We now consider quantified circuits in which a variable may occur both free
and bound. In the analogous QBF case, we can rename such bound variables in
consideration of their scope, so that finally no variable is both free and bound.
For example, (∃x α(x, y)) ∧ α(x, y) ≈ (∃x′ α(x′, y)) ∧ α(x, y). We have already
pointed out that such renamings are problematic for circuits, since they make
direct sharing of subcircuits impossible. In the example, α can no longer be
shared, so we need two copies α(x′, y) and α(x, y). Can we avoid such copying?

Clearly, non-pure circuits can be made pure by an indirect transformation:
We know that all quantified circuits, including non-pure ones, can be encoded as
v-linear NBFs, which in turn correspond to linear-size pure quantified circuits.

But there is also a direct linear-time transformation from non-pure to pure
circuits: for every variable x which has both free and bound occurrences in a
given quantified circuit c, let x′ be a new variable which does not yet occur in
c. Then we substitute x′ for all occurrences of x in c, including occurrences in
quantifier nodes. We call the resulting circuit c[x/x′]. To make it equivalent to the
original one, we bind x′ with an existential quantifier and require x′ to be true if
and only if x is true. We obtain a circuit which represents ∃x′((x′ = x)∧c[x/x′]),
as shown in Fig. 4 for the above example (∃x α(x, y)) ∧ α(x, y).

Essentially, this construction turns a free variable into a bound variable, so
instead of having a free variable named like a bound variable, we now have bound
variables with duplicate names (in Fig. 4, we get two quantifier nodes ∃x′). For
the previously mentioned indirect transformation from non-pure to pure circuits
via NBF, the situation is similar, because it requires universal quantifier nodes,
and their simulation by existential ones as in Fig. 3 also introduces existential
quantifier nodes with duplicate names. This is not unexpected, since pure circuits
with distinct quantifier names, previously denoted C∃(1), seem to be significantly
weaker (C∃(1) =p ∃BF) than those with duplicate names (C∃(2) =p QBF). Inter-
estingly, we can now show that the full expressiveness of QBF can be achieved
by existentially quantified circuits with distinct quantifier names if we allow
non-purity. Formally, the non-pure counterpart of C∃(1) is defined as follows:

Definition 8. C∗∃(1):= {c | c is a circuit over ∧,∨,¬ and ∃ in negation normal
form, every quantified variable occurs exactly once in the set of ∃ nodes }
In contrast to C∃(1) =linear ∃BF, we now prove C∗∃(1) =v−linear QBF.
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Fig. 4: Transformation of a non-pure into a pure circuit

Theorem 2. C∗∃(1) =v−linear QBF

Proof. 1. C∗∃(1) ≤v−linear QBF is obvious from the fact that any quantified
circuit, and thus also a C∗∃(1) circuit, can be transformed into a v-linear NBF
(Proposition 3), followed as before by a linear-time transformation to QBF.

2. We show QBF ≤linear C∗∃(1) with a similar approach as for the transforma-
tion from QBF to C∃(2) from Theorem 1: we bring the formula into prenex
form (with uniquely named variables) and use the obvious linear mapping
from pQBF into a corresponding quantified circuit in prenex form. We then
simulate the universal quantifier nodes using only existential nodes, but with
a new procedure which is different from the one shown in Fig. 3.
The new procedure uses the equivalence ∀x α(x,y) ≈ α(x,y) ∧ α(¬x,y).
Notice that x is now free in the right-hand formula. Typically, equivalent
formulas need to have the same free variables, but it is possible to have ad-
ditional ones which occur only on one side, as long as their actual values
do not influence the truth value of the formula. This is the case here with
x: no matter whether x = 0 or x = 1, the formula on the right represents
α(0,y) ∧ α(1,y), which is just the definition of universal quantification.
Now, we need to express this equivalence by a quantified circuit which con-
tains only one copy of α. Sharing of subcircuits by fanout only works if both
instances of α have exactly the same arguments, say α(x,y). Our idea is to
first introduce a new existential variable x′ which abbreviates ¬x:

∀x α(x,y) ≈ α(x,y) ∧ ∃x′((x′ = ¬x) ∧ α(x′,y))

In order to turn α(x′,y) into α(x,y), we then perform another renaming, but
this time, the new existential variable is named x, just like the free variable:

∀x α(x,y) ≈ α(x,y) ∧ ∃x′((x′ = ¬x) ∧ ∃x((x = x′) ∧ α(x,y)))

11



We end up with two copies of α(x,y) that can be shared by fanout, as shown
in Fig. 5. Everything else added to the resulting circuit has constant size, so
repeated application of this procedure will lead to a circuit of linear size. It
is clearly in C∗∃(1), since all quantified variables have distinct names. ut

⇒

∧

∧

∧

α(x, y)

∃x

∃x′

∀x

x

α(x, y)

y

x = x′

x′ = ¬x

x yx x′

x′ x

Fig. 5: ∀-simulation with unique quantifier names

We now have a second method to simulate universal quantifiers. Both of
them require the ability to express overlapping scopes of variables with identical
names, but the theorem shows that it does not matter whether that overlapping
is between two bound variables or between a bound and a free variable.

The expressive power of C∗∃(1) is also evident from the following observation:
In QBF, it is possible to compress conjunctions of formula instantiations for
different variable names with the following equivalence [7]:

α(x′, y) ∧ α(x, y) ≈ ∀u (((u = x′) ∨ (u = x))→ α(u, y))

For the dual case α(x′, y) ∨ α(x, y), we can use existential quantification:

α(x′, y) ∨ α(x, y) ≈ ∃u (α(u, y) ∧ ((u = x′) ∨ (u = x)))

In both cases, only one copy of α is needed. The second equivalence can obviously
be applied exactly the same in C∗∃(1). An equivalence of the first form could be
translated into C∗∃(1) by the above simulation of universal quantifiers, but it turns
out that the same degree of compression can be achieved by a direct encoding
without universal quantifiers. The idea is to introduce a local renaming of x′:

α(x, y) ∧ α(x′, y) ≈ α(x, y) ∧ ∃x((x = x′) ∧ α(x, y))

Now, both instances of α(x, y) can be computed by one subcircuit (Fig. 6).
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⇒

∧

∧

∃x∧

x

α(x, y)

y

x = x′

x x′x y

x′

α(x′, y)

y

α(x, y)

Fig. 6: Compression of renamed instantiations

6 Conclusion

We have studied quantified circuits, an extension of Boolean circuits with ad-
ditional quantifier nodes. Such a circuit can be understood as syntax tree of a
quantified Boolean formula with additional sharing of subformulas. In general,
quantified circuits have the same expressive power under polynomial-time equiv-
alence reductions as quantified Boolean formulas and nested Boolean functions:

Quantified Circuits =p QBF =p NBF

We could, however, prove the interesting result that every quantified circuit
can be transformed into a polynomial-size equivalent circuit containing only
existential quantifier nodes, which implies:

C∃ =p QBF

This simulation of universal quantifiers does require the ability to express over-
lapping scopes of variables with identical names, be it pairs of bound variables
or bound and free variables having the same names:

C∃(2) =p C∗∃(1) =p QBF

Such overlapping makes it possible to rename variables, and in combination
with the subformula sharing ability of the underlying circuit structure allows
compact encodings of subformula instantiations with different names, such as e.g.
α(x, y)∧α(x′, y). With the construction from Fig. 6, this can be expressed with
one copy of the circuit α(x, y) and without the need to use universal quantifiers
as in the QBF encoding α(x′, y)∧α(x, y) ≈ ∀u (((u = x′)∨ (u = x))→ α(u, y)).
Ordinary Boolean circuits and purely existentially quantified Boolean formulas
(∃BF) seem to be lacking exactly that renaming ability and appear to be limited
to abbreviate exact repetitions of subformulas. Nevertheless, it remains a long-
standing open problem to show that QBF is indeed exponentially more powerful
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than ∃BF. Perhaps, quantified circuits might provide a new perspective onto
that problem, especially since they allow focusing only on one kind of quantifier
and instead to consider renaming as the crucial feature.
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