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Abstract. In this paper, quantified Horn formulas with free variables
(QHORN∗) are investigated. The main result is that any quantified Horn
formula Φ of length |Φ| with free variables, |∀| universal quantifiers and
an arbitrary number of existential quantifiers can be transformed into an
equivalent formula of length O(|∀| · |Φ|) which contains only existential
quantifiers. Moreover, it is shown that quantified Horn formulas with
free variables have equivalence models where every existential quantifier
is associated with a monotone Boolean function.
The results allow a simple representation of quantified Horn formulas as
purely existentially quantified Horn formulas (∃HORN∗). An applica-
tion described in the paper is to solve QHORN∗-SAT in O(|∀| · |Φ|) by
using this transformation in combination with a linear-time satisfiability
checker for propositional Horn formulas.

1 Introduction

Quantified Boolean Formulas (QBF ) offer a concise way to represent formulas
which arise in areas such as planning, scheduling or verification. The ability
to provide compact representations for many Boolean functions does however
come at a price: determining the satisfiability of formulas in QBF is PSPACE-
complete, which is assumed to be significantly harder than the NP-completeness
of the propositional SAT problem. However, continued research and the lifting
of propositional SAT techniques to QBFs have recently produced interesting
improvements (see, e.g., [2, 3, 9, 10]) and have lead to the emergence of more
powerful QBF -SAT solvers [8].

Furthermore, the satisfiability problem is known to be tractable for some re-
stricted subclasses like QHORN [5] or Q2−CNF [1]. Those classes are defined
by imposing restrictions on the syntactic structure of the formula matrices. The



interesting question which we are investigating in this paper is how such a syn-
tactic restriction is affecting the structure of the set of satisfying truth value
assignments to the existentially quantified variables.

A suitable concept for describing the satisfiable truth value assignments to the
existential variables is the notion of models for formulas in QBF , which has
been introduced in [6]: for a quantified formula Φ with existential variables
y = y1, ..., ym, let M = (fy1

, ..., fym
) be a mapping which maps each exis-

tential variable yi to a propositional formula fyi
over universal variables whose

quantifiers precede the quantifier of yi. Then M is a satisfiability model for Φ
if the resulting formula Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym ], where simultaneously
each existential variable yi is replaced by its corresponding formula fyi

and the
existential quantifiers are dropped from the prefix, is true.

The concept of models for closed formulas can easily be extended to quantified
Boolean formulas with free variables (QBF ∗) [7]. In that case, the propositional
formulas fyi

may also contain free variables. For QBF ∗ formulas, an interest-
ing additional constraint is to require that Φ and Φ[y/M ] must be equivalent.
Formally, equivalence models are defined as follows: let Φ(z) = Qφ(x,y, z) be
a quantified Boolean formula with prefix Q and matrix φ, universal variables
x = x1, ..., xn, existential variables y = y1, ..., ym and free variables z = z1, ..., zr.
For propositional formulas fyi

over z and over universal variables whose quan-
tifiers precede ∃yi, we say M = (fy1

, ..., fym
) is an equivalence model for Φ(z) if

and only if Φ(z) ≈ ∀x1...∀xn φ(x1, ..., xn,y, z)[y/M ].

In this paper, we focus on the class of quantified Horn formulas with free vari-
ables (QHORN∗). While it has been previously known that closed quantified
Horn formulas have equivalence models consisting of monotone monomials and
the constant functions 0 or 1 (see [6]), the structure of QHORN∗ equivalence
models has been an open problem. In Section 2, we show that QHORN∗ formu-
las have equivalence models where the propositional formulas fyi contain only
conjunctions and disjunctions of positive literals, i.e. the fyi are monotone.

In the second part of this paper, we turn to the universal quantifiers. Section 3
demonstrates that we can eliminate all universal quantifiers and the correspond-
ing universal variables in QHORN∗ formulas without significantly increasing
the length of the formula. To be more precise, we show that a quantified Horn
formula Φ of length |Φ| with free variables, |∀| universal quantifiers and an ar-
bitrary number of existential quantifiers can be transformed into an equivalent
formula of length O(|∀| · |Φ|) which contains only existential quantifiers.
We finally explain how this transformation can be used to solve the satisfiability
problem for QHORN∗ in time O(|∀| · |Φ|) with a very simple algorithm.

We need some additional notation: for Φ ∈ QBF ∗, Φ(z) = Qφ(x,y, z) with
Q = ∀x1,1...∀x1,n1

∃y1,1...∃y1,m1
...∀xr,1...∀xr,nr

∃yr,1...∃yr,mr
, ni ≥ 1 and mi ≥ 1

for i = 1, .., r, we combine successive quantifiers of the same kind and simply
write Q = ∀X1∃Y1 ...∀Xr∃Yr with Xi = (xi,1, ..., xi,ni) and Yi = (yi,1, ..., yi,mi).
Another notation that we use is ab := (a1, ..., am, b1, ..., bn) to denote the con-
catenation of two tuples a = (a1, ..., am) and b = (b1, ..., bn).



2 Equivalence Models for QHORN * Formulas

Definition 1. Let M = (fy1
, ..., fym

) be an equivalence model for a quantified
Boolean formula Φ ∈ QBF ∗. Then M is a monotone equivalence model if
and only if the functions fyi , 1 ≤ i ≤ m, do not contain negative occurrences
of atoms, i.e. the fyi

can be written using only positive literals and the reduced
operator set {∧,∨} as well as fyi

= 0 or fyi
= 1.

Theorem 1. Any formula Φ ∈ QHORN∗ has a monotone equivalence model
M = (fy1

, ..., fym
) which satisfies the following properties: Φ[y/M ] ∈ QHORN∗,

and any clause in Φ with a positive existential variable contributes only tauto-
logical clauses to Φ[y/M ].

Proof: Due to space limitations, we omit the proof. It is by induction on the
number of quantifiers and can be outlined as follows: in the induction base, when
there is only one single existential variable, a monotone model is chosen such
that tautological clauses are created when the model is substituted for positive
instances of the existential variable. On the other hand, the negative instances
produce the set of possible Q-resolvents, which is known to be equivalent to
the original formula. In the induction step, we compose a monotone equivalence
model for k − 1 existential variables and a monotone equivalence model for the
k-th existential variable to obtain a model for all k existential variables.

Unfortunately, these models may be of exponential length, as a short argument
reveals. It is known (see, e.g., [5]) that converting a quantified Horn formula into
an equivalent propositional Horn formula may result in an exponential increase
in length required. But if we had an equivalence model of polynomial length, we
could use it to eliminate the existential variables, which in turn would allow us
to drop the universal variables, and we would end up with a purely propositional
formula of polynomial length. That contradiction leads to the conclusion that the
equivalence model may have exponential length. Nevertheless, knowing about the
monotony of those models is useful, as it allows for concise and elegant proofs.

3 Eliminating Universal Quantifiers

As converting a quantified Horn formula into an equivalent propositional Horn
formula may result in an exponentially longer formula, it is not a practical way
to go. As discussed above, eliminating only the existential quantifiers is not
practical either. But as it turns out, eliminating just the universal quantifiers
does not lead to this exponential increase in length. We will now prove this
surprising result and present the corresponding algorithm.

Definition 2. A formula Φ ∈ QHORN∗ is an existentially quantified Horn
formula with free variables if it is of the form Φ(z) = ∃y1...∃ym φ(z) (m ≥ 0),
i.e. if it does not contain universally quantified variables. The class of all such
formulas we denote by ∃HORN∗.



The goal of the following investigation is to transform an arbitrary formula in
QHORN∗ into an equivalent formula in ∃HORN∗ with a polynomial increase in
length. The method that we present is a specialization of the known exponential
method of expanding universal quantifiers in general QBF ∗ formulas. We first
present the general technique and then show how it can be refined for QHORN∗.

3.1 Eliminating Universal Quantifiers in QBF ∗ Formulas

The general method for expanding universal quantifiers is rather straightforward:
two copies of the original matrix are generated, one for the universally quantified
variable being true, and one for that variable being false. As explained in [2],
existential variables which depend on that universal variable need to be du-
plicated as well. For example, the formula ∃y1∀x∃y2 φ(x, y1, y2) is expanded to
∃y1∃y2∃y′2 φ(0, y1, y2)∧φ(1, y1, y′2). For multiple universal quantifiers, we succes-
sively expand each universal quantifier, starting with the innermost.

Based on this informal description, we now provide a formal representation.
Let Φ ∈ QBF ∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z), where
Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
) (ni ≥ 1 and mi ≥ 1, i = 1, ..., r,

r ≥ 1). Without loss of generality, we assume that the outermost quantifiers are
universal and the innermost quantifiers are existential.

The expanded formula is then given as Φ∃exp(z) :=

∧
A1∈{0,1}n1

∃Y A1
1

 ∧
A2∈{0,1}n2

∃Y A2
2 ....

 ∧
Ar∈{0,1}nr

∃Y Ar
r φ(A1...Ar, Y1...Yr, z)

 ...


The tuples Ai represent the possible truth value assignments to the universal
variables xi,1, ..., xi,ni . The expression

∧
Ai∈{0,1}ni should be understood as a

conjunction of 2ni clauses, one for each truth value assignment. Finally, ∃Y Ai
i is

an abbreviation for ∃yAi
i,1 ...∃y

Ai
i,mi

, the copies of the i-th sequence of existential
quantifiers. The index Ai is used to have a unique name for each of those copies.
For example, four copies of yi,j would be named y(0,0)i,j , y(0,1)i,j , y(1,0)i,j and y(1,1)i,j .

If there are n universal quantifiers in a formula Φ, its expansion Φ∃exp contains
2n copies of the formula’s original matrix. This exponential increase in length
makes the method unusable in general, but we can significantly simplify it:

3.2 Special Case: QHORN∗ Formulas

Definition 3. Let Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z) with Xi =
(xi,1, ..., xi,ni) and Yi = (yi,1, ..., yi,mi) (ni ≥ 1 and mi ≥ 1, i = 1, ..., r, r ≥ 1) be
a quantified Horn formula whose outermost quantifiers are universal and whose
innermost quantifiers are existential.



Then we define the formula Φ∃poly(z) as

Φ∃poly(z) :=
∧

A1∈Assign1

∃Y A1
1 ∧

A2∈Assign2(A1)

∃Y A2
2 ....

 ∧
Ar∈Assignr(A1...Ar−1)

∃Y Ar
r φ(A1...Ar, Y1...Yr, z)

 ...


with the restricted set of possible assignments

Assign1 = MaxOneZero(n1)

Assigni(A1, ..., Ai−1) =

{
MaxOneZero(ni) , ifA1...Ai−1 = {1}n1+...+ni−1

{1}ni , else

where

MaxOneZero(n) = {(a1, ..., an) | ∃i : ai = 0 and aj = 1 for j 6= i} ∪ {(1, ..., 1)}

is the set of n-ary tuples of binary values with at most one component being zero.

The only difference between the formula Φ∃poly and the expansion Φ∃exp for gen-
eral QBF ∗ formulas is that for quantified Horn formulas, not all possible truth
value assignments to the universally quantified variables have to be considered.
For Horn formulas, we discard assignments where more than one universally
quantified variable is false.

Lemma 1. Φ∃poly is equivalent to Φ.

Proof: We need to show that for a quantified Horn formula Φ with free variables z,
Φ∃exp(z) ≈ Φ∃poly(z) holds. Due to space considerations, we also have to omit
this proof. The main proof idea is as follows: if the matrix of Φ∃poly can be
satisfied when exactly one universal variable is false, we can compensate for an
additional universal variable being false by modifying the truth value assignment
to the existential variables.

In the definition of Φ∃poly, we can observe that there is one instantiation of
the matrix of the original formula for each possible assignment to the universal
variables where either all of those variables are true, or exactly one of them is
false. There are n + 1 such assignments. Furthermore, the previous lemma has
shown that Φ∃poly is equivalent to Φ∃exp, which in turn is equivalent to Φ, so we
immediately have the following theorem:

Theorem 2. For any quantified Horn formula Φ ∈ QHORN∗ with free vari-
ables, there exists an equivalent formula Φ′ ∈ ∃HORN∗ without universal quan-
tifiers. The length of Φ′ is bounded by |∀|·|Φ|, where |∀| is the number of universal
quantifiers in Φ, and |Φ| is the length of Φ.



3.3 The Transformation Algorithm

Listing 1 presents an algorithm to transform Φ into Φ∃poly as described above.
In the main loop of the algorithm, one universal variable xi,j is given the value
false, while all the others are true. For any such assignment Ax, all universal
variables which are dominated by xi,j (i.e. their corresponding quantifier follows
∀xi,j) have to be replaced by independent new variables y′. Then, the matrix of
the original formula has to be duplicated, with Ax being substituted for x and
y′ being substituted for y. After executing the main loop, one additional copy
is needed for the case where all universal variables are true.

Listing 1: The Transformation Algorithm

// Input: Φ ∈ QHORN∗, Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z),
// where Xi = (xi,1, ..., xi,ni) and Yi = (yi,1, ..., yi,mi)
// Output: Φ∃poly ∈ ∃HORN∗ with Φ∃poly ≈ Φ

φ∃poly = ∅;
for (i = 1 to r) do
for (j = 1 to ni) do Axi,j = 1;

for (i = 1 to r) do {
for (j = 1 to ni) do {
Axi,j = 0;
for (k = i to r) do
for (l = 1 to mk) do y′k,l = new ∃−var;

φ∃poly = φ∃poly ∪ φ[x/Ax,y/y
′]; // (∗)

Axi,j = 1;
}
for (l = 1 to mi) do y′i,l = new ∃−var;

}
φ∃poly = φ∃poly ∪ φ[x/Ax,y/y

′]; // (∗)

The lines marked with (*) need time O(|Φ|). They are executed n1+...+nr+1 =
|∀|+ 1 times, so the algorithm in total requires time O(|∀| · |Φ|).

3.4 Application: Satisfiability Testing

Let Φ(z) ∈ ∃HORN∗ be an existentially quantified Horn formula of the form
Φ(z) = ∃y1...∃ym φ(y1, ..., ym, z). Then Φ(z) is satisfiable if and only if its matrix
φ(y1, ..., ym, z) is satisfiable. The latter is a purely propositional formula, there-
fore a SAT solver for propositional Horn formulas can be used to determine the
satisfiability of an arbitrary formula in ∃HORN∗.
That observation leads to the following algorithm for determining the satisfia-
bility of a formula Ψ ∈ QHORN∗:

1. Transform Ψ into Ψ∃poly ∈ ∃HORN∗ with |Ψ∃poly| = O(|∀| · |Ψ |). This re-
quires time O(|∀| · |Ψ |) as discussed in Section 3.3.



2. Determine the satisfiability of ψ∃poly, which is the purely propositional ma-
trix of Ψ∃poly. It is well known (see [4]) that SAT for propositional Horn
formulas can be solved in linear time, in this case O(|ψ∃poly|) = O(|∀| · |Ψ |).

In total, the algorithm requires time O(|∀| · |Ψ |). The best existing algorithm
presented in [5] has the same complexity, but is significantly more complicated.

4 Conclusion and Outlook

In this paper, we have given two new properties of QHORN∗ formulas:
(1) they can easily be transformed into equivalent purely existentially quantified
formulas of length O(|∀| · |Φ|), (2) they have monotone equivalence models. Both
properties characterize QHORN∗ as a rather simple subclass of QBF ∗ formulas.

Based on these results, a new algorithm for determining the satisfiability of
QHORN∗ formulas in time O(|∀| · |Φ|) has been presented. Further investiga-
tion is needed to determine whether the simplicity of this new algorithm also
translates to better real-world performance than the previously known algorithm.
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