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Abstract

In this paper, quantified Horn formulas (QHORN) are investigated. We prove that
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characterization of QHORN satisfiability models which describe the set of satisfy-
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We also obtain a new algorithm for solving the satisfiability problem for quantified
Horn formulas with or without free variables in time O(|∀| · |Φ|) by transforming the
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show that QHORN satisfiability models can be found with the same complexity.
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1 Introduction

Quantified Boolean formulas (QBF ) offer a concise way to represent formulas
which arise in areas such as planning, scheduling or verification. The ability
to provide compact representations for many Boolean functions does how-
ever come at a price: determining the satisfiability of formulas in QBF is
PSPACE-complete, which is assumed to be significantly harder than the NP-
completeness of the propositional SAT problem. However, continued research
and the lifting of propositional SAT techniques to QBFs (see, e.g., [1,2,3])
have recently produced interesting improvements and have led to the emer-
gence of more powerful QBF -SAT solvers [4].

Furthermore, the satisfiability problem is known to be tractable for some re-
stricted subclasses likeQHORN [5] orQ2−CNF [6]. Those classes are defined
by imposing restrictions on the syntactic structure of the formula. In this pa-
per, we will focus on the class of quantified Horn formulas (QHORN), which
contains all QBF formulas in conjunctive normal form (CNF ) whose clauses
have at most one positive literal. That means the clauses can be thought of
as implications where the premise is a conjunction of positive literals and the
conclusion is (at most) one positive literal. Being able to represent this simple
version of the “if-then” statement in a tractable subclass of QBF is part
of the importance of the class QHORN . Another important point is that
QHORN formulas may occur as subproblems when solving arbitrary QBF
formulas [7].

The interesting question which we want to investigate is how such a syntactic
restriction affects the structure of the set of satisfying truth assignments to the
existentially quantified variables. Knowing about that relationship might allow
us to transform a formula into a simplified equivalent formula by dropping or
substituting certain quantified variables.

A suitable concept for describing the satisfying truth assignments to the
existential variables is the notion of models for formulas in QBF , which
has been introduced in [8]. A model maps each existential variable yi to
a propositional formula fyi over universal variables whose quantifiers pre-
cede the quantifier of yi. A model is called a satisfiability model if substi-
tuting the model functions for the existential variables leads to a formula
which is true. Consider a two-person game represented by the QBF formula
Φ = ∀x1∃y1...∀xn∃ynG(x1, y1, ..., xn, yn), where xi is the i-th move of the first
player and yj is the j-th move of the second player. The moves are binary, and
the function G determines for a given sequence x1, y1, ..., xn, yn of moves which
player wins. Assume G = 1 whenever player 2 wins. Then a model describes
which moves yi the second player makes depending on the preceding moves
x1, ..., xi of player 1. And a satisfiability model describes a winning strategy

2



for player 2, which means that for any sequence of opponent moves x1, ..., xi,
he can find suitable moves yi such that finally G(x1, y1, ..., xn, yn) = 1.

In this paper, we demonstrate that the special syntactic structure of quantified
Horn formulas has a heavy impact on the interplay of universal and existential
quantifiers. We can show that not all possible values of the preceding universal
variables are relevant for the choice of the existentials. Instead, only certain
combinations of values for the universals, which we can describe by a suitable
relation R∀, are sufficient for determining the satisfiability model. In order
to characterize the relevant core of the satisfiability model, we introduce the
concept of R∀-partial satisfiability models. We then prove that for QHORN
formulas, the partial model can always be extended to a total satisfiability
model, so the partial model alone carries all the necessary information about
the behavior of the existential variables.

The paper also investigates Horn formulas in which not all variables are bound
by quantifiers. When such free variables are allowed, we indicate this with a
star ∗ and write QHORN∗. Formulas with free variables are different in that
their satisfiability is dependent on the values of the free variables, whereas
closed formulas are either true or false. Accordingly, we extend the concept
of models for closed formulas to formulas with free variables and investigate
which of the structural properties of satisfiability models for closed QHORN
formulas are preserved. We prove that those generalized models are monotone.

The special behavior of the quantifiers has far-reaching consequences. We
present the following results:

• All the universal quantifiers in a QHORN∗ formula can be eliminated
in quadratic time and with only quadratic blowup of the formula. To be
more precise, we present an algorithm which transforms any formula Φ ∈
QHORN∗ of length |Φ| with free variables, |∀| universal quantifiers and
an arbitrary number of existential quantifiers into an equivalent quantified
Horn formula of length O(|∀| · |Φ|) which contains only existential quanti-
fiers.
• We obtain a new algorithm for solving QHORN∗-SAT in time O(|∀|·|Φ|) by

transforming the input formula into a satisfiability-equivalent propositional
formula.
• We show how to find satisfiability models for QHORN formulas in time
O(|∀| · |Φ|), which means finding models is just as difficult as determining
satisfiability.
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2 Preliminaries

In this section, we recall the basic concepts and terminology for propositional
formulas and QBF . We also introduce some additional notation.

A literal is a propositional variable (v) or a negated variable (¬v). A dis-
junction of literals is called a clause, and a conjunction of clauses is a CNF
formula.

Quantified Boolean formulas introduce quantifiers over variables. ∀x φ(x) is
defined to be true if and only if φ(0) is true and φ(1) is true. Variables which
are bound by universal quantifiers are called universal variables and are usu-
ally given the names x1, ..., xn. Similarly, ∃y φ(y) is defined to be true if and
only if φ(0) or φ(1) is true. In this case, y is called an existential variable.
Those usually have names y1, ..., ym. A quantified Boolean formula Φ is in
prenex form if Φ = Q1v1...Qnvn φ(v1, ..., vn) with quantifiers Qi ∈ {∀,∃} and a
propositional formula φ(v1, ..., vn) over variables v1, ..., vn. We call φ the matrix
of Φ. Unless mentioned otherwise, we assume that QBF formulas are always
in prenex form.

Variables which are not bound by quantifiers are free variables. Formulas
without free variables are called closed. If free variables are allowed, we indicate
this with an additional star ∗ after the name of the formula class. Accordingly,
QBF is the class of closed quantified Boolean formulas, and QBF ∗ denotes the
quantified Boolean formulas with free variables (and analogously for QHORN
and QHORN∗, etc.). We write Φ(z1, ..., zr) = Q φ(z1, ..., zr) or Φ(z) = Q φ(z)
for a QBF ∗ formula with prefix Q, matrix φ and free variables z = (z1, ..., zr).

A closed QBF formula is either true or false. It is true if there exists an assign-
ment of truth values to the existential variables depending on the preceding
universal variables such that the propositional matrix of the formula is true for
all values of the universal variables. For example, Φ = ∀x∃y (¬x∨y)∧(x∨¬y)
is true, because when choosing y = x, the resulting matrix (¬x∨x)∧ (x∨¬x)
is tautological.

The truth value of a QBF ∗ formula depends on the value of the free vari-
ables. A QBF ∗ formula is satisfiable for a given truth assignment t(z) :=
(t(z1), ..., t(zr)) ∈ {0, 1}r to the free variables z = (z1, ..., zr) if there ex-
ists an assignment of truth values to the existential variables depending on
the free variables and the preceding universal variables such that the matrix
of the formula is true for all values of the universal variables. For example,
Φ(z) = ∀x∃y (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ z) is satisfiable for z = 1, because
when choosing y = ¬x, the resulting matrix (x ∨ ¬x) ∧ (¬x ∨ x) ∧ (x ∨ z)
is tautological for z = 1. For z = 0, however, Φ is unsatisfiable, because we
cannot find a suitable y.
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The concept of satisfiability models as a means for describing the satisfying
truth assignments to the existential variables is essential for this paper, so we
provide a formal definition (based on [8]):

Definition 1 For a quantified Boolean formula Φ ∈ QBF with existential
variables y = (y1, ..., ym), let M = (fy1 , ..., fym) be a mapping which associates
with each existential variable yi a propositional formula fyi over universal vari-
ables whose quantifiers precede the quantifier of yi. Then M is a satisfiability
model for Φ if the resulting formula Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym ], where
simultaneously each existential variable yi is replaced by its corresponding for-
mula fyi and the existential quantifiers are dropped from the prefix, is true.

In Section 6, we will investigate how this concept can be extended to formulas
with free variables.

Two QBF ∗ formulas Ψ1(z1, ..., zr) and Ψ2(z1, ..., zr) are said to be equivalent
(Ψ1 ≈ Ψ2) if and only if Ψ1 |= Ψ2 and Ψ2 |= Ψ1, where semantic entailment
|= is defined as follows: Ψ1 |= Ψ2 if and only if for all truth assignments
t(z) = (t(z1), ..., t(zr)) ∈ {0, 1}r to the free variables z = (z1, ..., zr), we have
Ψ1(t(z)) = 1 ⇒ Ψ2(t(z)) = 1.

We need some additional notation:

For Φ ∈ QBF ∗, Φ(z) = Qφ(x,y, z), we introduce the following notation to
combine successive quantifiers of the same kind:
If Q has the form Q = ∀x1,1...∀x1,n1∃y1,1...∃y1,m1 ...∀xr,1...∀xr,nr∃yr,1...∃yr,mr

with ni ≥ 1 and mi ≥ 1 for i = 1, .., r, we simply write Q = ∀X1∃Y1 ...∀Xr∃Yr
with quantifier blocks Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
), i = 1, .., r.

Another notation that we use is AB := (a1, ..., am, b1, ..., bn) to denote the
concatenation of two tuples A = (a1, ..., am) and B = (b1, ..., bn).

3 Eliminating Universal Quantifiers

It is known that converting a quantified Horn formula into an equivalent propo-
sitional Horn formula may result in an exponentially longer formula (see, e.g.,
[9]), so this is not a practical way to go. The question then is whether it is
at least possible to eliminate just one kind of quantifier. Can we remove all
the universal quantifiers and leave only existential ones, such that the length
of the resulting existentially quantified Horn formula is bounded by a polyno-
mial? In this section, we investigate the role of the universal quantifiers and
then use that knowledge to eliminate them. Let us begin with the following
definition:
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Definition 2 A formula Φ ∈ QHORN∗ is an existentially quantified
Horn formula with free variables if it is of the form Φ(z) = ∃y1...∃ym φ(z)
(m ≥ 0), i.e. if it does not contain universally quantified variables. The class
of all such formulas we denote by ∃HORN∗.

The goal of the following investigation is to transform an arbitrary formula
in QHORN∗ into an equivalent formula in ∃HORN∗ with a polynomial in-
crease in length. The method that we present is a specialization of the known
exponential method of expanding universal quantifiers in general QBF ∗ for-
mulas in CNF. We first present the general technique and then investigate the
methodology for refining it in the special case of QHORN∗ formulas.

3.1 Eliminating Universal Quantifiers in QBF ∗ Formulas

In QBF ∗, quantifiers can be considered as abbreviations. We have the equiv-
alence ∃y Φ(y, z) ≈ Φ(0, z) ∨ Φ(1, z) (the QBF ∗ analog of the well-known
Shannon Expansion) and the dual ∀x Φ(x, z) ≈ Φ(0, z) ∧ Φ(1, z). This can
be used to eliminate quantifiers by expansion. Since we have CNF formu-
las, universal expansion is more convenient as it retains the CNF structure.
The general method for expanding a universal quantifier is rather straightfor-
ward: two copies of the original matrix are generated, one for the universally
quantified variable being true, and one for that variable being false. Since
(∃y Φ(0, y))∧(∃y Φ(1, y)) 6≈ ∃y (Φ(0, y) ∧ Φ(1, y)), existential variables which
are in the scope of that universal quantifier need to be duplicated as well. For
example, in the formula ∃y1∀x∃y2 φ(x, y1, y2), the choice for the existential
variable y2 depends on the value of x. We must therefore introduce two sepa-
rate instances y(0)

2 and y(1)
2 of the original variable y2, where y

(0)
2 is used in the

copy of the matrix for x = 0, and analogously y(1)
2 for x = 1. We obtain the

expanded formula ∃y1∃y(0)
2 ∃y

(1)
2 φ(0, y1, y

(0)
2 ) ∧ φ(1, y1, y

(1)
2 ). For multiple uni-

versal quantifiers, we successively expand each universal quantifier, starting
with the innermost.

Based on this informal description, we now provide a formal representation of
the expanded formula.
Let Φ ∈ QBF ∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z) be the
formula whose universal quantifiers we want to expand. Xi = (xi,1, ..., xi,ni

)
and Yi = (yi,1, ..., yi,mi

) (ni ≥ 1 and mi ≥ 1, i = 1, ..., r, r ≥ 1) are the quan-
tifier blocks in the prefix, and φ is the propositional matrix in CNF. Without
loss of generality, we assume that the outermost quantifiers are universal. If
they were existential, we could treat these existentially quantified variables
as free variables, and the outermost quantifiers in the remaining prefix would
then be universal. Furthermore, we assume that the innermost quantifiers are
existential, as universal variables which do not dominate any existential vari-
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ables can be removed.

The expanded formula is then given as

Φ∃exp(z) :=
∧

A1∈{0,1}n1

(
∃Y A1

1∧
A2∈{0,1}n2

(
∃Y A1A2

2

...∧
Ar∈{0,1}nr

(
∃Y A1...Ar

r φ(A1...Ar, Y
A1

1 ...Y A1...Ar
r , z)

)
...
))

The tuples Ai represent the possible truth assignments to the universal vari-
ables xi,1, ..., xi,ni

. The expression
∧

Ai∈{0,1}ni should be understood as a con-
junction of 2ni clauses, one for each truth assignment. Finally, ∃Y A1..Ai

i is an
abbreviation for ∃yA1...Ai

i,1 ...∃yA1...Ai
i,mi

, the copies of the i-th block of existential
quantifiers. The additional index A1...Ai is used to tag each copy with the
values of the preceding universal variables. Its purpose is to have a unique
name for each of those copies. For example, four copies of yi,j would be named
y

(0,0)
i,j , y(0,1)

i,j , y(1,0)
i,j and y(1,1)

i,j .

Using induction on the number of blocks of universal quantifiers, it is possible
to show that Φ(z) ≈ Φ∃exp(z). We omit this proof, as it is quite obvious that
Φ∃exp is simply the formalization of the elimination algorithm described above.

Here is an example: the formula

Φ(z) = ∀x1∃y1∀x2∀x3∃y2 φ(x1, x2, x3, y1, y2, z)

is expanded to Φ∃exp(z) =

∃y(0)
1 (∃y(0,0,0)

2 φ(0, 0, 0, y
(0)
1 , y

(0,0,0)
2 , z) ∧ ∃y(0,0,1)

2 φ(0, 0, 1, y
(0)
1 , y

(0,0,1)
2 , z) ∧

∃y(0,1,0)
2 φ(0, 1, 0, y

(0)
1 , y

(0,1,0)
2 , z) ∧ ∃y(0,1,1)

2 φ(0, 1, 1, y
(0)
1 , y

(0,1,1)
2 , z))∧

∃y(1)
1 (∃y(1,0,0)

2 φ(1, 0, 0, y
(1)
1 , y

(1,0,0)
2 , z) ∧ ∃y(1,0,1)

2 φ(1, 0, 1, y
(1)
1 , y

(1,0,1)
2 , z) ∧

∃y(1,1,0)
2 φ(1, 1, 0, y

(1)
1 , y

(1,1,0)
2 , z) ∧ ∃y(1,1,1)

2 φ(1, 1, 1, y
(1)
1 , y

(1,1,1)
2 , z))

Φ∃exp is not in prenex form. This would be easy to fix by moving all quantifiers
to the front. In the sample formula above, the prefix might then look like

∃y(0)
1 ∃y

(0,0,0)
2 ∃y(0,0,1)

2 ∃y(0,1,0)
2 ∃y(0,1,1)

2 ∃y(1)
1 ∃y

(1,0,0)
2 ∃y(1,0,1)

2 ∃y(1,1,0)
2 ∃y(1,1,1)

2 .
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For clarity’s sake, we did not consider this in the general formula Φ∃exp.

As the expansion example above demonstrates, the resulting formula is rather
voluminous. If there are n universal quantifiers in an input formula Φ, its
expansion Φ∃exp contains 2n copies of the formula’s original matrix. Therefore,
the expansion generally results in an exponential increase in length.

In combination with other techniques like Q-Resolution [10] or by expanding
only a limited number of universals [11], the rapid growth of the formula can
often be mitigated, making the method quite successful in practice. Neverthe-
less, it remains problematic for larger input formulas. But we can significantly
simplify the expansion in the special case of quantified Horn formulas.

3.2 Partial Satisfiability Models

In this section, we show that for quantified Horn formulas, we do not need to
consider all possible truth assignments to the universal variables. We restrict
those assignments according to a relation R∀(n) on the set of possible truth
assignments to n universals.

Definition 3 By Bi
n, we denote the bit vector of length n where only the i-th

element is zero, i.e. Bi
n := (b1, ..., bn) with bi = 0 and bj = 1 for j 6= i.

Moreover, we define the following relations on n-tuples of truth values:

(1) Z≤1(n) =
⋃
i
{Bi

n} ∪ {(1, ..., 1)} (at most one zero)

(2) Z=1(n) =
⋃
i
{Bi

n} (exactly one zero)

(3) Z≥1(n) = {(a1, ..., an) | ∃i : ai = 0} (at least one zero)

For example, if n = 3, we have the following relations:

Z≤1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

Z=1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}

Z≥1(3) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}

We omit the parameter n and simply write Z≤1 (or Z=1 resp. Z≥1) when it
is clear from the context. Usually, n equals the total number of the universal
quantifiers in a given formula.

Let Φ = Qφ(x,y) ∈ QBF . The definition of a satisfiability model in Section 2
requires that substituting the existentials y in Φ produces a formula Φ[y/M ]
which is true. That means the matrix φ[y/M ] must be true for all possible
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assignments to the universals x. We now introduce a special kind of satisfia-
bility model which weakens this condition: a so-called R∀-partial satisfiability
model is only required to satisfy φ[y/M ] for certain truth assignments to the
universal variables which are given by a relation R∀.

Definition 4 For Φ = Qφ(x,y) ∈ QBF with universals x = (x1, ..., xn) and
existentials y = (y1, ..., ym), let M = (fy1 , ..., fym) be a mapping which asso-
ciates with each existential variable yi a propositional formula fyi over uni-
versal variables whose quantifiers precede the quantifier of yi. Furthermore, let
R∀(n) be a relation on the set of possible truth assignments to the n universals.
Then M is a R∀-partial satisfiability model for Φ if the formula φ[y/M ]
is true for all x ∈ R∀(n).

For the sake of completeness, we also allow n = 0 (i.e. formulas without
universal variables) in the above definition, in which case the fyi are constants
0 or 1, and we require that φ[y/M ] is true.

It is important to point out that satisfiability models (and thus also partial
satisfiability models and the related results presented in this section) are only
defined for closed formulas, i.e. for formulas without free variables. Neverthe-
less, this concept is also important for the general case with free variables,
because we often consider fixed assignments to the free variables and can then
proceed as in the closed case. Section 3.3 will give a nice demonstration of this
approach.

Consider the following example: the formula Φ = ∀x1∀x2∃y (x1 ∨ y)∧ (x2 ∨ ȳ)
does not have a satisfiability model, but M = (fy) with fy(x1, x2) = x̄1 ∨ x2

is a Z≤1-partial satisfiability model for Φ, because φ[y/M ] = (x1 ∨ x̄1 ∨ x2) ∧
(x2 ∨ (x1 ∧ x̄2)) ≈ x2 ∨ x1, which is true for all x = (x1, x2) with x ∈ Z≤1.

It is not surprising that the mere existence of a Z≤1-partial satisfiability model
does not imply the existence of a (total) satisfiability model - at least not in
the general case. Interestingly, this implication is indeed true for quantified
Horn formulas. We now show: if we can find a Z≤1-partial satisfiability model
M to satisfy a quantified Horn formula whenever at most one of the universals
is false, then we can also satisfy the formula for arbitrary truth assignments to
the universals. We achieve this by using M to construct a (total) satisfiability
model M t.

Definition 5 Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula
with universal variables x = (x1, ..., xn) and existentials y = (y1, ..., ym), and
let M = (fy1 , .., fym) be a Z≤1-partial satisfiability model for Φ. For each
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fyi(x1, ..., xni
) in M , we define f t

yi
as follows:

f t
yi

(x1, ..., xni
) := (x1 ∨ fyi(0, 1, 1, ..., 1))

∧ (x2 ∨ fyi(1, 0, 1, ..., 1))

∧ ...

∧ (xni
∨ fyi(1, 1, ..., 1, 0))

∧ fyi(1, ..., 1)

Then we call M t = (f t
y1
, ..., f t

ym) the total completion of M .

Please notice that the previous definition is equivalent to the following:

f t
yi

(x1, ..., xni
) = (x̄1 → fyi(0, 1, 1, ..., 1))

∧ (x̄2 → fyi(1, 0, 1, ..., 1))

∧ ...

∧ (x̄ni
→ fyi(1, 1, ..., 1, 0))

∧ fyi(1, ..., 1)

When some of the arguments are zero, consider all cases where at most one of
those arguments is zero and return the conjunction of the corresponding orig-
inal function values. For example, f t

y(1, 0, 0, 1) = fy(1, 0, 1, 1) ∧ fy(1, 1, 0, 1) ∧
fy(1, 1, 1, 1). In case all the arguments are 1, simply return the value of the
original function, i.e. f t

y(1, .., 1) = fy(1, .., 1). These observations lead to the
following lemma:

Lemma 6 Let t(x) = (t(x1), ..., t(xn)) ∈ Z≥1(n) with t(xz1) = 0, ..., t(xzk) = 0
and t(xs) = 1 for s 6= z1, ..., zk be a truth assignment to the universal variables
where k ≥ 1 universals xz1 , ..., xzk are zero. Then the definition of f t

yi
implies

f t
yi

(t(x1), ..., t(xni
)) =

∧
1≤j≤k

fyi(tzj(x1), ..., tzj(xni
)) ∧ fyi(1, ..., 1)

where tzj(x) = (tzj(x1), ..., tzj(xn)) = B
zj
n is a truth assignment where exactly

one universal xzj is zero.

Moreover, total expansion equals the partial model when all universals on which
yi depends are 1:

f t
yi

(1, ..., 1) = fyi(1, ..., 1)
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This definition is based on an observation: it is a well known fact about proposi-
tional Horn formulas, proved by Alfred Horn himself [12], that the intersection
of two satisfying truth assignments is a satisfying truth assignment, too. Let
t1(x) = (t1(x1), ..., t1(xn)) ∈ {0, 1}n and t2(x) = (t2(x1), ..., t2(xn)) ∈ {0, 1}n
be two truth assignments over variables x1, ..., xn, then the intersection of t1
and t2 is defined as

t1(x) ∩ t2(x) = (t1(x1) ∧ t2(x1), ..., t1(xn) ∧ t2(xn)) .

Our idea is to establish a similar relationship between the satisfying truth as-
signments to the existential variables in a quantified Horn formula, taking also
into consideration the universally quantified variables. Assume that a QHORN
formula with two universal variables xi and xj is known to be satisfiable when
xi = 0 and xj = 1 or when xi = 1 and xj = 0. That means there exist two
truth assignments t1 and t2 to the existential variables such that the formula
is satisfied in both cases. If we lift the closure under intersection to the quanti-
fied case, it means that the intersection of t1 and t2 satisfies the formula when
both xi and xj are zero.

An important point to consider is that we have to obey the quantifier de-
pendencies when choosing truth values for the existential variables. Assume
the previous example includes an existential variable yk with t1(yk) = 1 and
t2(yk) = 0 and the additional restriction that ∃yk occurs earlier in the prefix
than ∀xj. Then yk does not depend on xj, but the intersection of t1 and t2
would assign yk the value 0 when xi = 0 and xj = 0, which is not allowed,
because we have already set yk to 1 when xi = 0 (but xj = 1). This shows
that intersecting arbitrary satisfying truth assignments is not appropriate for
QHORN formulas. However, the proof of Theorem 7 guarantees by construc-
tion that quantifier dependencies are respected. Another point to notice is
that we always intersect with fyi(1, ..., 1). This makes sure that we reduce f t

yi

to a well-defined value from the partial satisfiability model in cases where all
zeros are assigned to universals on which yi does not depend.

Theorem 7 Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula with
a Z≤1-partial satisfiability model M = (fy1 , .., fym). Then the total completion
of M , i.e. M t = (f t

y1
, ..., f t

ym) as defined above, is a satisfiability model for Φ.

Proof: We must show that φ[y/M t] is true for all truth assignments to the
universal variables. Since f t

yi
(1, ..., 1) = fyi(1, ..., 1), we only need to consider

truth assignments where at least one universal is zero.

Let t(x) = (t(x1), ..., t(xn)) ∈ Z≥1(n) with t(xz1) = 0, ..., t(xzk) = 0 and
t(xs) = 1 for s 6= z1, ..., zk be a truth assignment to the universal variables
where k ≥ 1 universals xz1 , ..., xzk are zero. When we combine the truth as-
signment to the universals and the corresponding values of the model functions

11



into a (n+m)-tuple of truth values, we obtain the following bit vector:

τ = (t(x1), ..., t(xn), f t
y1

(t(x1), ..., t(xn1)), ..., f
t
ym(t(x1), ..., t(xnm)))

Our goal is to prove that the propositional matrix φ is true under the truth
value assignment τ = (τ(x1), ..., τ(xn), τ(y1), ..., τ(ym)). We can write the tuple
t(x) with k universals being zero as an intersection t(x) = tz1(x)∩ ...∩tzk(x) of
k assignments tzj(x) = B

zj
n with exactly one zero each. Similar to the definition

of f t
yi
, it is useful to intersect with (1, .., 1) as well. With this trick, we have

t(x) = tz1(x) ∩ ... ∩ tzk(x) ∩ (1, ..., 1) and can decompose τ as follows:

τ = (tz1(x), f t
y1

(t(x1..n1)), ..., f
t
ym(t(x1..nm)))

∩ · · ·

∩ (tzk(x), f t
y1

(t(x1..n1), ..., f
t
ym(t(x1..nm)))

∩ (1, ..., 1, f t
y1

(t(x1..n1), ..., f
t
ym(t(x1..nm)))

For clarity, we abbreviate t(x1..ni
) := (t(x1), ..., t(xni

)) and f(1) := f(1, ..., 1).
Now, Lemma 6 allows us to decompose this even further:

τ = (tz1(x),
∧

j=1..k
fy1(tzj (x1..n1)) ∧ fy1(1), ...,

∧
j=1..k

fym(tzj (x1..nm)) ∧ fym(1))

∩ · · ·

∩ (tzk(x),
∧

j=1..k
fy1(tzj (x1..n1)) ∧ fy1(1), ...,

∧
j=1..k

fym(tzj (x1..nm)) ∧ fym(1))

∩ (1, ..., 1,
∧

j=1..k
fy1(tzj (x1..n1)) ∧ fy1(1), ...,

∧
j=1..k

fym(tzj (x1..nm)) ∧ fym(1))

This can be simplified by distributing the conjunctions over the intersections:

τ = (tz1(x), fy1(tz1(x1..n1)), ..., fym(tz1(x1..nm)))

∩ · · ·

∩ (tzk(x), fy1(tzk(x1..n1), ..., fym(tzk(x1..nm)))

∩ (1, ..., 1, fy1(1), ..., fym(1)))

We have split τ = (τ(x1), ..., τ(xn), τ(y1), ..., τ(ym)) into an intersection τ =
τ1 ∩ ... ∩ τk ∩ τ0 of k + 1 individual truth assignments to the universal and
existential variables in φ. A close look reveals that each τi represents a sit-
uation where at most one universal is zero and each existential yi is chosen
as determined by fyi for that constellation of the universals. Under the as-
sumption that M = (fy1 , .., fym) is a Z≤1-partial satisfiability model of Φ, we
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know that φ is true under each of those assignments τ0, ..., τk. Since φ is a
propositional Horn formula, the intersection of satisfying truth assignments is
again a satisfying truth assignment.

By construction, quantifier dependencies are respected, i.e. an existential can-
not obtain a different value when only a universal on which it does not depend
changes. To see this, we write τ as τ = (τ1∩τ0)∩ (τ2∩τ0)∩ ...∩ (τk∩τ0). Inter-
secting τi with τ0 may change the truth value of an existential, but the value
of all universals stays the same. And in the outer intersections, the truth value
of an existential can only change if one of the universals on which it depends
changes value as well. 2

Using Definition 5 and Theorem 7, we can immediately obtain a (total) satis-
fiability model upon finding a Z≤1-partial satisfiability model for a quantified
Horn formula. This means that the behavior of the existential quantifiers is
completely determined by the cases where at most one of the universal vari-
ables is false. The cases where more than one of them is assigned false are not
relevant for predicting the behavior of the existentials.

On the basis of this interesting result, we now present a transformation which
eliminates the universal quantifiers from a quantified Horn formula without
significantly increasing its length.

3.3 Eliminating Universal Quantifiers in QHORN∗ Formulas

Definition 8 Let Φ ∈ QHORN∗ with

Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z)

where Xi = (xi,1, ..., xi,ni
) and Yi = (yi,1, ..., yi,mi

) (ni ≥ 1 and mi ≥ 1, i =
1, ..., r, r ≥ 1), be a quantified Horn formula whose outermost quantifiers are
universal and whose innermost quantifiers are existential.

Then we define the formula Φ∃poly(z) as

Φ∃poly(z) :=
∧

A1∈Assign1

(
∃Y A1

1∧
A2∈Assign2(A1)

(
∃Y A1A2

2

...∧
Ar∈Assignr(A1...Ar−1)

(
∃Y A1...Ar

r φ(A1...Ar, Y
A1

1 ...Y A1...Ar
r , z)

)
...
))

13



with the restricted set of possible assignments

Assign1 = Z≤1(n1)

Assigni(A1, ..., Ai−1) =

Z≤1(ni) , ifA1...Ai−1 = {1}n1+...+ni−1

{1}ni , else

The only difference between the formula Φ∃poly and the expansion Φ∃exp for
general QBF ∗ formulas which was presented in Section 3.1 is that for quan-
tified Horn formulas, not all possible truth assignments to the universally
quantified variables have to be considered. For Horn formulas, we discard as-
signments where more than one universal variable is false.

For the formula

Φ(z) = ∀x1∃y1∀x2∀x3∃y2 φ(x1, x2, x3, y1, y2, z)

from the example in Section 3.1, we have

Φ∃poly(z) = ∃y(0)
1 ∃y(0,1,1)

2 φ(0, 1, 1, y
(0)
1 , y

(0,1,1)
2 , z)∧

∃y(1)
1 ( ∃y(1,0,1)

2 φ(1, 0, 1, y
(1)
1 , y

(1,0,1)
2 , z)∧

∃y(1,1,0)
2 φ(1, 1, 0, y

(1)
1 , y

(1,1,0)
2 , z)∧

∃y(1,1,1)
2 φ(1, 1, 1, y

(1)
1 , y

(1,1,1)
2 , z))

Before we can prove that Φ∃poly is indeed equivalent to Φ, we make a fun-
damental observation: for the special case that Φ is closed, i.e. there are no
free variables, the satisfiability of Φ∃poly implies the existence of a Z≤1-partial
satisfiability model for Φ.

Lemma 9 Let Φ ∈ QHORN be a quantified Horn formula without free vari-
ables, and let Φ∃poly be defined as above. If Φ∃poly is satisfiable then Φ has a
Z≤1-partial satisfiability model.

Proof:

Let t be a satisfying truth assignment to the existentials in Φ∃poly. This assign-
ment t provides us with all the information needed to construct a Z≤1-partial
satisfiability model for Φ.

The basic idea is to assemble the truth assignments to the individual copies
y

(x1,1,...,xi,ni
)

i,j of an existential variable yi,j into a common model function. It

14



works as follows: let yi,j be an existential variable in Φ whose corresponding
quantifier is preceded by the universal quantifiers ∀x1,1...∀xi,ni

. Then we define:

fyi,j(x1,1, ..., xi,ni
) = (x̄1,1 ∧ x1,2 ∧ ... ∧ xi,ni

→ t(y
(0,1,...,1)
i,j ))

∧ (x1,1 ∧ x̄1,2 ∧ x1,3 ∧ ... ∧ xi,ni
→ t(y

(1,0,1,...,1)
i,j ))

∧ ...

∧ (x1,1 ∧ ... ∧ xi,ni−1 ∧ x̄i,ni
→ t(y

(1,...,1,0)
i,j ))

∧ (x1,1 ∧ ... ∧ xi,ni
→ t(y

(1,...,1)
i,j ))

Now, the fyi,j form a Z≤1-partial satisfiability model for Φ, because for all x =

(x1,1, ..., xr,nr) with x ∈ Z≤1, we have fyi,j(x1,1, ..., xi,ni
) = t(y

(x1,1,...,xi,ni
)

i,j ), and
φ(x1,1, ..., xr,nr , t(y

(x1,1,...,x1,n1 )
1,1 ), ..., t(y

(x1,1,...,xr,nr )
r,mr )) = 1 due to the satisfiability

of Φ∃poly. 2

Using Lemma 9 in combination with Theorem 7, it is now easy to show that
Φ∃poly is equivalent to Φ.

Theorem 10 Φ∃poly is equivalent to Φ.

Proof:

The implication Φ(z) |= Φ∃poly(z) is obvious, as the clauses in Φ∃poly are just
a subset of the clauses in Φ∃exp, which in turn is equivalent to Φ.

The implication Φ∃poly(z) |= Φ(z) is more interesting. Assume that Φ∃poly(z∗)
is satisfiable for some fixed z∗. With the free variables fixed, we can treat both
Φ∃poly(z∗) and Φ(z∗) as closed formulas and apply Lemma 9 and the results
from Section 3.2 as follows:
By Lemma 9, the satisfiability of Φ∃poly(z∗) implies that Φ(z∗) has a Z≤1-
partial satisfiability model. On this partial model, we apply the total expansion
from Definition 5 and Theorem 7 to obtain a (total) satisfiability model. The
fact that Φ(z∗) has a satisfiability model implies that Φ(z∗) is satisfiable. 2

In the definition of Φ∃poly, we can observe that there is one instantiation of the
matrix of the original formula for each possible assignment to the universal
variables in which either all of those variables are true or exactly one of them
is false. There are n+ 1 such assignments. Furthermore, the previous theorem
has shown that Φ∃poly is equivalent to Φ, so we have the following corollary.

Corollary 11 For any quantified Horn formula Φ ∈ QHORN∗ with free vari-
ables, there exists an equivalent formula Φ′ ∈ ∃HORN∗ without universal
quantifiers. The length of Φ′ is bounded by |∀| · |Φ|, where |∀| is the number of
universal quantifiers in Φ, and |Φ| is the length of Φ.
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3.4 The Transformation Algorithm

Let Φ ∈ QHORN∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z)
where Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
) (ni ≥ 1 and mi ≥ 1, i =

1, ..., r, r ≥ 1), be a quantified Horn formula whose outermost quantifiers are
universal and whose innermost quantifiers are existential.

Listing 1 presents an algorithm to transform Φ into Φ∃poly as described above.

Listing 1. The Transformation Algorithm
// Input: Φ ∈ QHORN∗, Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z),
// where Xi = (xi,1, ..., xi,ni) and Yi = (yi,1, ..., yi,mi)
// Output: The matrix of Φ∃poly ∈ ∃HORN∗ with Φ∃poly ≈ Φ

φ∃poly = ∅;
for (i = 1 to r) do

for (j = 1 to ni) do Axi,j = 1;
for (i = 1 to r) do {

for (j = 1 to ni) do {
Axi,j = 0;
for (k = i to r) do

for (l = 1 to mk) do y′k,l = new ∃−var;
φ∃poly = φ∃poly ∪ φ[x/Ax,y/y

′]; // (∗)
Axi,j = 1;

}
for (l = 1 to mi) do y′i,l = new ∃−var;

}
φ∃poly = φ∃poly ∪ φ[x/Ax,y/y

′]; // (∗)

In the main loop of the algorithm, one universal variable xi,j is given the value
false, while all the others are true. For any such assignment Ax, all existen-
tial variables which are dominated by xi,j (i.e. their corresponding quantifier
follows ∀xi,j) have to be replaced by independent new variables y′. Then, the
matrix of the original formula has to be duplicated, with Ax being substituted
for x and y′ being substituted for y. After executing the main loop, one addi-
tional copy is needed for the case where all universal variables are true. Notice
that we treat the existential variables as objects. If we let y′i,j = new∃-var
and use this variable in multiple locations, then all share the same variable
object, which means all those subformulas share that existential variable.

The lines marked with (*) need time O(|Φ|). They are executed n1 + ...+nr +
1 = |∀|+ 1 times, so the algorithm in total requires time O(|∀| · |Φ|).
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4 Satisfiability Testing for QHORN∗ Formulas

Let Φ(z) ∈ ∃HORN∗ be an existentially quantified Horn formula of the form
Φ(z) = ∃y1...∃ym φ(y1, ..., ym, z). Then Φ(z) is satisfiable if and only if its ma-
trix φ(y1, ..., ym, z) is satisfiable. The latter is a purely propositional formula,
therefore a SAT solver for propositional Horn formulas can be used to de-
termine the satisfiability of an arbitrary formula in ∃HORN∗. That makes
∃HORN∗ a suitable representation for satisfiability testing. Moreover, as we
have just shown in Section 3, we can efficiently transform arbitrary QHORN∗
formulas into this special form. These observations suggest that we should al-
ways take this route. We then obtain the following algorithm for determining
the satisfiability of a formula Ψ ∈ QHORN∗:

(1) Transform Ψ into Ψ∃poly ∈ ∃HORN∗ with |Ψ∃poly| = O(|∀| · |Ψ|). This
requires time O(|∀| · |Ψ|) as discussed in Section 3.4.

(2) Determine the satisfiability of ψ∃poly, which is the purely propositional
matrix of Ψ∃poly. It is well known (see [13]) that SAT for propositional
Horn formulas can be solved in linear time, here O(|ψ∃poly|) = O(|∀|· |Ψ|).

In total, the algorithm requires time O(|∀| · |Ψ|). The best existing algorithm
presented in [9] has the same complexity, but that algorithm is significantly
more complicated and cannot directly reuse existing propositional SAT solvers
like this new algorithm does.

5 Satisfiability Models for QHORN Formulas

The findings on partial satisfiability models in Section 3.2 have enabled us
to transform arbitrary quantified Horn formulas into a very simple structure
as shown above. But besides this main result, the work on partial satisfiabil-
ity models can also provide us with more insight into the structure of (total)
satisfiability models for quantified Horn formulas without free variables. That
enables us to better understand the general behavior of the quantified vari-
ables. Moreover, this section will outline an efficient algorithm for finding
(total) satisfiability models for QHORN formulas.

5.1 Structure of the Models

We start with showing that satisfiable QHORN formulas have models con-
sisting of functions of the form fy(x1, ..., xn) =

∧
i∈I xi (or the constants fy = 0
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resp. fy = 1). In accordance with [8], this class of models is called K2.

Definition 12 Let

K2 := {f | ∃I ⊆ {1, ..., n} : f(x1, ..., xn) =
∧

i∈I xi, n ≥ 1}

∪ {f | f = 0 or f = 1}

be a class of Boolean functions, and let M = (fy1 , ..., fym) be a satisfiability
model for a formula Φ ∈ QBF . Then we call M a K2 satisfiability model
for Φ if the model functions fyi are in K2 for every 1 ≤ i ≤ m.

Theorem 13 Any satisfiable QHORN formula has a K2 satisfiability model.

Proof:

If Φ is satisfiable, it has a Z≤1-partial satisfiability model M = (fy1 , ..., fym).
According to Definition 5 and Theorem 7, its total completion M t is a (total)
satisfiability model and is composed of functions given by

f t
yi

(x1, ..., xni
) := (x1 ∨ fyi(0, 1, 1, ..., 1))

∧ (x2 ∨ fyi(1, 0, 1, ..., 1))

∧ ...

∧ (xni
∨ fyi(1, 1, ..., 1, 0))

∧ fyi(1, ..., 1)

Notice that fyi(0, 1, 1, ..., 1), fyi(1, 0, 1, ..., 1), ..., fyi(1, ..., 1) are merely Boolean
constants in the definition of f t

yi
. So we actually have functions of the form

f t
yi

(x1, ..., xni
) := (x1 ∨ c1)

∧ (x2 ∨ c2)

∧ ...

∧ (xni
∨ cni

)

∧ cni+1

with cj = 0 or cj = 1. Clearly, those functions are in K2. 2

In [8], it has already been shown that quantified Horn formulas have K2 mod-
els. However, that proof was significantly longer and required more advanced
techniques (Q-pos-unit-resolution). Most importantly, however, it did not lead
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to an efficient algorithm for finding those K2 models. It has since been an open
question whether it would be possible to find K2 satisfiability models in time
at most O(|∀|·|Φ|), the complexity of QHORN -SAT (see Section 4). As shown
in the following section, the new approach with partial satisfiability models
also solves this problem and provides an O(|∀| · |Φ|)-algorithm.

5.2 Finding Models

The algorithm for finding satisfiability models is actually a byproduct of the
quantifier elimination in Section 3.3: the proof of Lemma 9 describes how a
Z≤1-partial satisfiability model for a formula Φ ∈ QHORN is obtained by
solving Φ∃poly. This leads to the following basic algorithm for finding a K2

satisfiability model for Φ:

(1) Transform Φ into Φ∃poly and solve it.
(2) Obtain a Z≤1-partial satisfiability model as in the proof of Lemma 9.
(3) Use total completion (Definition 5) to build a total satisfiability model.

A closer look at steps 2 and 3 shows that we do not actually have to write
down the Z≤1-partial satisfiability model, because the total expansion only
needs certain values of the partial model:

f t
yi

(x1, ..., xni
) := (x1 ∨ fyi(0, 1, 1, ..., 1))

∧ (x2 ∨ fyi(1, 0, 1, ..., 1))

∧ ...

∧ (xni
∨ fyi(1, 1, ..., 1, 0))

∧ fyi(1, ..., 1)

In this excerpt from Definition 5, f t
yi

is the total expansion, and fyi belongs
to the partial model. According to the proof of Lemma 9, the fyi are given as

fyi(x1, ..., xni
) = (x̄1 ∧ x2 ∧ ... ∧ xni

→ t(y
(0,1,...,1)
i ))

∧ (x1 ∧ x̄2 ∧ x3 ∧ ... ∧ xni
→ t(y

(1,0,1,...,1)
i ))

∧ ...

∧ (x1 ∧ ... ∧ xni−1 ∧ x̄ni
→ t(y

(1,...,1,0)
i ))

∧ (x1 ∧ ... ∧ xni
→ t(y

(1,...,1)
i ))
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where t is a satisfying truth assignment to the existentials yAi (the copies of
yi) in Φ∃poly. Now, notice that fyi(0, 1, ..., 1) = t(y

(0,1,...,1)
i ), etc. That allows us

to combine both definitions, and we obtain the following theorem.

Theorem 14 Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula
with universal variables x = (x1, ..., xn) and existentials y = (y1, ..., ym). We
require that Φ is satisfiable, which means its expansion Φ∃poly is also satisfiable.
Let t be a satisfying truth assignment to the existentials in Φ∃poly. Then M =
(fy1 , .., fym) with

fyi(x1, ..., xni
) := (x1 ∨ t(y(0,1,1,...,1)

i ))

∧ (x2 ∨ t(y(1,0,1,...,1)
i ))

∧ ...

∧ (xni
∨ t(y(1,1,...,1,0)

i ))

∧ t(y(1,...,1)
i )

is a satisfiability model for Φ.

This allows us to refine the algorithm for finding a K2 satisfiability model for
a formula Φ ∈ QHORN :

(1) Transform Φ into Φ∃poly and solve it. If Φ∃poly is unsatisfiable, Φ has no
satisfiability model. Otherwise, we obtain a satisfying truth assignment
to the existentials in Φ∃poly.

(2) Use this assignment to construct a K2 satisfiability model as described
in Theorem 14.

The first step requires time O(|∀| · |Φ|) (see Section 4), and the second needs
time O(|∃| · |∀|). In total, we can find the model in O(|∀| · |Φ| + |∃| · |∀|) =
O(|∀| · |Φ|).

Corollary 15 Let Φ ∈ QHORN ∩ QSAT be a satisfiable quantified Horn
formula. Then we can find a K2 satisfiability model for Φ in time O(|∀| · |Φ|),
where |∀| is the number of universal quantifiers in Φ and |Φ| the length of Φ.

6 Equivalence Models for QHORN∗ Formulas

As pointed out earlier (in Section 3.2), satisfiability models are only defined
for closed formulas, i.e. for formulas without free variables. This restriction can
often be circumvented by considering fixed assignments to the free variables
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and then treating the formula with fixed free variables as a closed formula.
This trick allowed us to establish many results of this paper for formulas with
free variables, too. Nevertheless, it would be useful to have “native” models
for QBF ∗ and generalize the results for satisfiability models to these models.

As introduced in [14], equivalence models extend the notion of models to for-
mulas with free variables by allowing that the propositional formulas fyi may
also contain free variables. Instead of requiring that Φ[y/M ] must be satis-
fiable, equivalence models demand that Φ and Φ[y/M ] must be equivalent.
That makes the concept fit nicely with the main application of QBF ∗ formu-
las, which is to provide an equivalent (potentially shorter) representation of
propositional formulas. Formally, equivalence models are defined as follows:

Definition 16 Let Φ(z) = Qφ(x,y, z) be a quantified Boolean formula with
prefix Q and matrix φ, universal variables x = (x1, ..., xn), existential variables
y = (y1, ..., ym) and free variables z = (z1, ..., zr). For propositional formulas
fyi over z and over universal variables whose quantifiers precede ∃yi, we say
M = (fy1 , ..., fym) is an equivalence model for Φ(z) if and only if Φ(z) ≈
∀x1...∀xn φ(x1, ..., xn,y, z)[y/M ].

We have shown that closed quantified Horn formulas have K2 satisfiability
models, which means the model functions are conjunctions of positive univer-
sal variables. The question is how this generalizes to equivalence models for
QHORN∗ formulas. We managed to come up with the following answer: the
model functions are now conjunctions and disjunctions of positive universals
and free variables. Thus it seems that the absence of negation in the model
functions is a characteristic feature of quantified Horn formulas which is still
preserved when free variables are allowed.

More formally, we have been able to prove that quantified Horn formulas have
monotone equivalence models. We first define what monotony means here.

Definition 17 Let x = (x1, ..., xn), x′ = (x′1, .., x
′
n) ∈ {0, 1}n, and let f :

{0, 1}n → {0, 1} be a Boolean function. Then f is monotone if and only if
x ≤ x′ implies f(x) ≤ f(x′), with canonical ordering 0 ≤ 1 and x ≤ x′ iff
xi ≤ x′i for all i.

We usually represent the Boolean functions from which equivalence models
are composed as propositional formulas. This leads to an equivalent charac-
terization of monotony:

Proposition 18 (based on [15])

A Boolean function f : {0, 1}n → {0, 1} is monotone if and only if it can be
represented as a propositional formula F which contains only positive literals
and the reduced operator set {∧,∨}. We also allow F = 0 resp. F = 1.
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In the following discussion, we always use this characterization of monotony.

Definition 19 Let M = (fy1 , ..., fym) be an equivalence model for a quantified
Boolean formula Φ ∈ QBF ∗. Then M is a monotone equivalence model
if and only if the functions fyi, 1 ≤ i ≤ m, are monotone.

Notice that when we substitute an arbitrary monotone model M for the exis-
tential variables, the formula Φ[y/M ] may not be in CNF anymore. Of course,
it can be transformed into CNF with the laws of associativity and distributiv-
ity and DeMorgan’s laws, but another problem may then occur: the resulting
CNF formula is not necessarily a Horn formula.

In our proof, however, the construction of the model assures that Φ[y/M ] is a
quantified Horn formula when transformed into CNF. The class of non-CNF
formulas that may be transformed into CNF formulas with the Horn property
shall be denoted with QHORN∗L as defined below.

Definition 20 With QHORN∗L, we denote the class of quantified Boolean
formulas Φ ∈ QBF ∗ for which there exist Φ′ ∈ QHORN∗ such that Φ′ can
be obtained from Φ by applying the laws of associativity and distributivity and
DeMorgan’s laws.

We now show that a quantified Horn formula always has a monotone equiv-
alence model. In the proof, we inductively construct such a model for any
Φ ∈ QHORN∗.

Theorem 21 Any formula Φ ∈ QHORN∗ has a monotone equivalence model
M = (fy1 , ..., fym). Moreover,M can be chosen such that Φ[y/M ] ∈ QHORN∗L.

Proof: If Φ(z) is unsatisfiable, there is a {0, 1}-equivalence model, and there-
fore a monotone equivalence model M with Φ[y/M ] ∈ QHORN∗L. For the
remainder of this proof, we assume the satisfiability of the input formula and
prove the theorem by induction on the number of quantifiers.

For k = 1, we have a formula with one quantifier, which may be universal
or existential. If Φ(z) = ∀x1 φ(x1, z) with a propositional formula φ, then the
empty model M = () is a monotone equivalence model for Φ.

The second case in which the quantifier is existential is more interesting. Sup-
pose Φ is given as Φ(z) = ∃y1 φ(y1, z) with a propositional formula φ. If
y1 or ¬y1 occurs in φ(y1, z) as a unit clause, define fy1 = 1 or fy1 = 0,
respectively. If y1 occurs only positively or only negatively in φ(y1, z), let
fy1 = 1 or fy1 = 0. Otherwise, if y1 occurs both positively and negatively, let
¬ai,1 ∨ ...∨¬ai,si ∨ y1 := ¬Ai ∨ y1 be the clauses in which y1 occurs positively
(1 ≤ i ≤ cpos, where cpos is the number of those clauses). Analogously, let
bj,1 ∨ ... ∨ bj,tj ∨ ¬y1 := Bj ∨ ¬y1 be the clauses in which y1 occurs negatively
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(1 ≤ j ≤ cneg). Finally, let C be the clauses which contain neither y1 nor ¬y1.
Clauses which contain both y1 and ¬y1 are tautological and can therefore be
removed from the formula. If y1 only occurs in tautological clauses, we can
also remove that variable itself.
We now define the model of y1. The idea is to choose a model such that tauto-
logical clauses are created when fy1 is substituted for positive instances of y1,
while substituting fy1 for the negative instances of y1 produces the expansion
φ(0, z) ∨ φ(1, z) of the existentially quantified formula ∃y1 φ(y1, z). That can
be accomplished with the following definition:

fy1 =
∨

1≤i≤cpos
Ai =

∨
1≤i≤cpos

(ai,1 ∧ ... ∧ ai,si)

For a clause ¬Ai ∨ y1 in which y1 occurs positively, we obtain ¬Ai ∨ fy1 =
¬Ai ∨ A1 ∨ ... ∨ Ai ∨ ... ∨ Acpos , which contains both Ai and ¬Ai and is thus
tautological.
On the other hand, consider the set of clauses in which y1 occurs negatively:(∧

j
(Bj ∨ ¬y1)

)
[y1/fy1 ] =

∧
j

(
Bj ∨ ¬

(∨
i
Ai

))
≈
∧

j

(
Bj ∨

(∧
i
¬Ai

))
≈
∧

i,j
(¬Ai ∨Bj)

The clauses C which do not contain y1 (respectively ¬y1) remain unchanged.
As motivated before, the resulting formula Φ[y1/fy1 ] ≈

∧
i,j (¬Ai ∨Bj) ∧ C is

the expansion of the existentially quantified formula ∃y1 φ(y1, z), which can
be seen as follows:

∃y1 φ(y1, z)≈φ(0, z) ∨ φ(1, z)

≈
(∧

i
¬Ai ∧ C

)
∨
(∧

j
Bj ∧ C

)
≈
((∧

i
¬Ai

)
∨
(∧

j
Bj

))
∧ C

≈
∧

i,j
(¬Ai ∨Bj) ∧ C

This proves that M = (fy1) is an equivalence model for Φ(z). Notice that∧
i,j (¬Ai ∨Bj) ∧ C is a Horn formula, because the ¬Ai contain only nega-

tive literals, and each Bj has at most one positive literal. Thus, Φ[y1/fy1 ] ∈
QHORN∗L.

Now let k > 1. Again, we have two cases: the outer quantifier may either be
universal or existential. If it is universal, Φ has the form Φ(z) = ∀xk Φ′(xk, z),
where Φ′ is a formula with k− 1 quantifiers. If Φ ∈ QHORN∗, then also Φ′ ∈
QHORN∗, and by the induction hypothesis, Φ′ has a monotone equivalence
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model MΦ′ with Φ′[y/MΦ′ ] ∈ QHORN∗L. MΦ′ is also a monotone equivalence
model for Φ, because Φ′ ≈ Φ′[y/MΦ′ ] implies

Φ(z) = ∀xk Φ′(xk, z) ≈ ∀xk (Φ′(xk, z)[y/MΦ′ ]) = (∀xk Φ′(xk, z))[y/MΦ′ ]

= Φ(z)[y/MΦ′ ]

Obviously, Φ[y/MΦ′ ] ∈ QHORN∗L as well.

In the second case, the outer quantifier is existential, and Φ has the form
Φ(z) = ∃yk Φ′(yk, z). Notice that yk is a free variable in Φ′. If Φ′ contains only
universal quantifiers, we can remove all of them, as they do not dominate any
existentially quantified variables. We are then left with only one existential
variable and can proceed as in the induction base. For the remainder of this
proof, we assume that Φ′ contains at least one existentially quantified variable.
As above, Φ′ is a formula with k−1 quantifiers, and according to the induction
hypothesis, it has a monotone equivalence model MΦ′ = (f ′y1 , ..., f

′
yk−1

) with
Φ′[y/MΦ′ ] ∈ QHORN∗L. Φ′(yk, z) ≈ Φ′(yk, z)[y/MΦ′ ] implies

Φ(z) = ∃ykΦ′(yk, z) ≈ ∃yk (Φ′(yk, z)[y/MΦ′ ])

Φ′[y/MΦ′ ] ∈ QHORN∗L means that there exists Φ′′(z) ∈ QHORN∗ with
Φ′′(z) ≈ ∃yk (Φ′(yk, z)[y/MΦ′ ]). Under the assumption that Φ′ contains at
least one existential variable, Φ′[y/MΦ′ ] has less than k− 1 quantifiers. Thus,
Φ′′ has less than k quantifiers, and only the outermost is existential. By the
induction hypothesis, it has a monotone equivalence model MΦ′′ = (f ′′yk) with
Φ′′[yk/f

′′
yk

] ∈ QHORN∗L.
We now combine MΦ′ = (f ′y1 , ..., f

′
yk−1

) and MΦ′′ = (f ′′yk) into a monotone
equivalence model M = (fy1 , ..., fyk) for the original formula Φ by assigning
fyi = f ′yi [yk/f

′′
yk

] for 1 ≤ i ≤ k − 1 and fyk = f ′′yk . It is obvious that M is
monotone. Informally, it is also clear that M is an equivalence model for Φ,
but the formal proof is somewhat tedious:

Φ(z)

≈ Φ′′(z)

≈ Φ′′(z)[yk/f
′′
yk

]

≈ (∃yk (Φ′(yk, z)[y1/f
′
y1
, ..., yk−1/f

′
yk−1

]))[yk/f
′′
yk

]

= (∃yk Φ′(yk, z))[y1/f
′
y1

[yk/f
′′
yk

], ..., yk−1/fyk−1
[yk/f

′′
yk

], yk/f
′′
yk

]

= (∃yk Φ′(yk, z))[y1/fy1 , ..., yk/fyk ]

= Φ(z)[y/M ]
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Φ(z)[y/M ] ∈ QHORN∗L, because Φ′′(z)[yk/f
′′
yk

] ∈ QHORN∗L and Φ(z)[y/M ] ≈
Φ′′(z)[yk/f

′′
yk

]. 2

The previous result reveals the structure of equivalence models for QHORN∗
formulas. Unfortunately, the proof itself does not lead to a feasible algorithm
for finding those equivalence models. The problem with the algorithm sug-
gested by the proof is that the formula which is being worked on may blow
up exponentially. As that algorithm moves step by step from the innermost
quantifiers to the outermost quantifiers, the model found in the previous step
is always substituted into the given formula which is then re-transformed into
CNF. For certain formulas (see [9]), this may cause exponential growth. Fur-
ther research should investigate whether there exist better algorithms for find-
ing equivalence models for QHORN∗. It is also unclear whether the relation-
ship between partial and total satisfiability models for closed formulas has a
counterpart for equivalence models.

7 Conclusions

This paper has demonstrated that the syntactic restriction of allowing at most
one positive literal per clause influences the semantics of quantified Horn for-
mulas with an interesting effect on the behavior of the quantifiers. We have
shown that only cases where at most one of the universally quantified variables
is false are relevant for the choice of the existential variables. This has allowed
us to provide a detailed characterization of satisfiability models for QHORN
formulas by focusing only on the relevant parts of the model. Accordingly, the
concept of R∀-partial satisfiability models has been introduced, and it has been
shown that for QHORN formulas, the partial model can always be extended
to a total satisfiability model.

Based on these results, we have been able to show that

• any formula Φ ∈ QHORN∗ of length |Φ| with free variables, |∀| universal
quantifiers and an arbitrary number of existential quantifiers can be trans-
formed into an equivalent quantified Horn formula of length O(|∀| · |Φ|)
which contains only existential quantifiers.
• QHORN∗-SAT can be solved in time O(|∀| · |Φ|) by transforming the input

formula into a satisfiability-equivalent propositional formula.
• satisfiability models for QHORN formulas can be found in time O(|∀| · |Φ|).

We have also investigated models for QHORN∗ formulas with free variables
and have proved that these equivalence models are monotone.

Further research should continue investigating equivalence models, because
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compared to the wealth of results on satisfiability models for closed formulas,
our understanding of equivalence models is still rather limited. In particular,
it must be investigated how to efficiently compute them for given formulas.
In addition, it might be interesting to conduct experimental studies on the
structure of satisfiability/equivalence models for different instances of quanti-
fied Horn formulas (i.e. random formulas, formulas with a special structure,
etc.).
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