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Abstract. We present an extension of Q-Unit resolution for formulas
that are not completely in clausal form. This b-unit resolution is applied
to different classes of quantified Boolean formulas in which the existen-
tial and universal variables satisfy the Horn property. These formulas are
transformed into propositional equivalents consisting of only polynomi-
ally many subformulas. We obtain compact encodings as Boolean circuits
and show that both representations have the same expressive power.

1 Introduction

Recently, there has been growing interest [7, 8] in non-clausal or structural quan-
tified Boolean formulas (QBF or QBF∗ if free variables are allowed). Accordingly,
we present an extension of Q-Unit resolution, denoted b-unit resolution, for for-
mulas that are not completely in clausal form. We relate the idea to Boolean
circuits which have the ability to use intermediate results in multiple places by
fan-out, so that we avoid copying of resolvents in our b-unit resolution.

We begin with some definitions. A QBF∗ formula Φ is satisfiable if there is a
truth assignment v to the free variables z such that Φ is true after substituting the
truth values v for the free variables. For Φ∈QCNF∗, we write Φ = Q
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where the b-part φbi is a clause over bound variables and the f-part φfi is a clause
over free variables. QHORN∗ is the set of quantified Horn formulas with free
variables, i.e. formulas Qφ where φ is a Horn formula. QHORNb is the set of
formulas where each b-part φbi is a Horn clause and φfi an arbitrary clause over
free variables. QHORN+ (QHORN−) is the subset of QHORNb for which the
f-part of each clause is a disjunction of positive (negated) variables.

A circuit is a DAG with one outgoing edge and multiple input nodes labeled
with Boolean variables. The other nodes are AND-, OR-, and NOT-gates that
each have two (AND and OR) or one (NOT) incoming edges. The fan-out of a
circuit is the maximum number of outgoing edges of the AND- and OR-gates.
We can transform in linear time any circuit into standard form, where the inner
nodes are only AND- and OR-gates and the inputs are variables x and/or negated
variables ¬x. Subsequently, we focus on the class C of circuits in standard form.

Amonotone propositional formula contains no negations. Anti-monotone for-
mulas are negated monotone formulas. Analogously, monotone circuits Cmon
have only non-negated variables as inputs. Anti-monotone circuits Canti−mon



have only negated inputs ¬x. Suppose we have Horn clauses (α1 → x), ...,
(αn → x). We can combine these into ((α1 ∨ . . .∨αn)→ x), which is not a Horn
clause, but (α1∨. . .∨αn) is monotone and thus equivalent to a monotone circuit.
More generally, we introduce C-Horn clauses (c → z), where c is a monotone
propositional formula and z a variable. (c → z) can be represented as a circuit
(z ∨ ¬c) with monotone c. This non-standard circuit can be transformed into
(z ∨ c′) in standard form, where c′ ≈ ¬c and c′ is anti-monotone. A conjunction∧
i(ci → zi) of circuits that represent C-Horn clauses is called a CHorn circuit.
For i = 1, 2, let Φi(z) be a propositional formula over variables z, a QBF∗

formula with free variables z, or a circuit with input variables z. Then Φ1 and
Φ2 are equivalent (Φ1 ≈ Φ2) if and only if for every truth assignment v over
z we have v(Φ1) = v(Φ2). The size |c| of a circuit c is the number of gates.
For a formula Φ, |Φ| is its length. The usual definition is to count the number of
occurrences of variables, including the prefix. Without multiple negations (¬¬x),
this differs only by a constant factor from the number of operators.

Definition 1. For classes A, B of propositional or QBF∗ formulas or circuits,
we let A ≤rp B if and only if there is a polynomial q such that for any α ∈ A
there is β ∈ B with α ≈ β and |β| ≤ q(|α|). A =rp B if A ≤rp B and B ≤rp A.

2 Extensions of Unit Resolution

It is well known that unit resolution is complete for Horn formulas. Q-Unit reso-
lution [5] extends the idea to QCNF∗ by resolving on free and existential literals
where one of the parent clauses has exactly one such literal. This is correct and
refutation-complete [5] for formulas Φ = Q(α1∧ . . .∧αm) with free variables z in
which for every clause αi the existential and free literals form a Horn clause, i.e.
after eliminating all universals the clause is in HORN. Such formulas are called
quantified extended Horn (QEHORN∗). The satisfiability problem for this class
has been shown to be PSPACE-complete in general and coNP-complete for a
fixed number of prefix alternations (∀∃)k, k ≥ 1 [4]. There exist QEHORN for-
mulas for which every resolution refutation requires exponentially many steps [5].

We now present an extension of Q-Unit resolution for formulas that are not
completely in clausal form. Let Φ = Qv1 . . . Qvn

∧
i(φ

b
i∨αi) be in QBF∗, where φbi

is a Horn clause over bound variables and αi an arbitrary propositional formula
over free variables. Then Φ is not in QHORNb if αi is not a disjunction of literals.
But φbi is a Horn formula on which we can apply unit resolution.

Definition 2. We say that (L ∨ α) is a b-unit clause if L is a literal over an
existentially quantified variable and α is a formula over free variables.

Let (L∨α1) be a b-unit clause, (¬L∨β) a Horn clause over bound variables,
and α2 a formula over free variables. Then we define b-unit resolution as

(L ∨ α1), (¬L ∨ β ∨ α2) | 1
b-Unit-Res (β ∨ α1 ∨ α2) .

Q-Unit resolution is only refutation complete in combination with universal re-
duction, that is, the removal of universals that do not dominate any existential in
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the same clause. We also have to be careful not to resolve clauses with tautolog-
ical universals. Such blockings usually require detours in resolution derivations,
making them longer. While ∃-unit clauses in Q-Unit resolution may have an ar-
bitrary number of universals, our definition of b-unit resolution avoids these dif-
ficulties by requiring that b-unit clauses have exactly one bounded literal which
is existential. This is justified by the following result on QHORNb formulas.

It has been shown in [3] that any QHORN∗ formula Φ can be transformed
into an equivalent Φ′ ∈ ∃HORN∗, such that the length of Φ′ and the time
for executing the transformation are less than quadratic in |Φ|. That proves
QHORN∗ =rp ∃HORN∗. A careful analysis of the transformation shows that the
free parts of the clauses remain unchanged. Thus, ∃HORN− =rp QHORN−. For
Φ ∈ QHORN+, we substitute the positive occurrences of free variables by their
complements. Then the formula is in QHORN− and has an equivalent formula
in ∃HORN− of at most quadratic length. We reverse the substitution and obtain
a formula in ∃HORN+ equivalent to Φ and with length at most quadratic in |Φ|.

For QHORNb ≤rp ∃HORNb, let Φ(z) = Q (
∧

1≤i≤m(φbi ∨ φ
f
i )) be a QHORNb

formula. We introduce for each clause a new variable wi and replace φfi with
¬wi. We get the QHORN− formula Φ(w) = Q

∧
1≤i≤m(φbi ∨ ¬wi). Because of

∃HORN− =rp QHORN−, there is an ∃HORN− formula Φ′(w) = ∃y
∧
j(ϕ

b
j ∨ϕ

f
j )

of quadratic length with Φ(w) ≈ Φ′(w). For 1 ≤ i ≤ m, we now replace ¬wi
with φfi and obtain for (ϕbj ∨¬wi1 ∨ · · · ∨ ¬wir ) the clause (ϕbj ∨ φ

f
i1
∨ · · · ∨ φfir ).

The result is equivalent to Φ and is in ∃HORNb with length polynomial in |Φ|.

Lemma 1. ∃HORN◦ =rp QHORN◦ for ◦ ∈ {∗, b,+,−} by polynomial-time
transformations.

Each step of b-unit resolution can be simulated by a series of regular Q-Unit
resolution steps. Let Qφ = Q(φ′ ∧ (L ∨ α1) ∧ (¬L ∨ β ∨ α2)) be the formula
which contains the two extended clauses to be resolved. Then we transform
(L ∨ α1) into an equivalent conjunction of clauses (L ∨ α1,1) ∧ ... ∧ (L ∨ α1,r),
and similarly (¬L ∨ β ∨ α2) into (¬L ∨ β ∨ α2,1) ∧ ... ∧ (¬L ∨ β ∨ α2,s). Now
we perform all possible Q-Unit resolutions over L. The definition of Q-Unit
resolution implies Qψ ≈ Q(ψ∧σ) for every resolvent σ [6]. In our case, it follows
that Qφ ≈ Q(φ

∧
i,j(β ∨ α1,i ∨ α2,j)). Since all resolvents contain β, we pull it

out
∧
i,j(β ∨ α1,i ∨ α2,j) ≈ β ∨

∧
i,j(α1,i ∨ α2,j). Now we can reverse the CNF

transformation of α1 and α2: β ∨
∧
i,j(α1,i ∨ α2,j) ≈ β ∨

∧
i(α1,i ∨

∧
j α2,j) ≈

β ∨
∧
i(α1,i ∨ α2) ≈ β ∨ α1 ∨ α2, which is the b-unit resolvent as defined above.

Proposition 1. Let Φ = Qφ be a QBF∗ formula, and let σ be a b-unit resolvent
Φ | 1

b-Unit-Res σ. Then we have Qφ ≈ Q(φ ∧ σ).

So, b-unit resolution is a way to perform multiple unit resolution steps at once.
We attempt to make even more use of this capability by actively combining
multiple b-unit clauses with the same bound variable into a larger b-unit clause.

Definition 3. Let ϕ = {F1,1 → x1...Fr1,1 → x1, ..., F1,m → xm...Frm,m → xm}
be a set of b-unit clauses. Fi,j contains only free variables, and xj is bound.
We define cmb(ϕ) := {(F1,1 ∨ . . .∨Fr1,1)→ x1, . . . , (F1,m ∨ . . .∨Frm,m)→ xm}.
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3 Structure of Resolvents and Circuits

We now want to derive by b-unit resolution from a given ∃HORN∗ formula a
quantifier-free formula (F → z) where F is a monotone propositional formula.
While F may have exponential size, we show that it essentially consists of only
at most quadratically many different subformulas, because it can be derived
by a quadratic number of b-unit resolution steps, where each resolvent can be
represented by a linear-size circuit. By fan-out greater than 1, the substitution
of one resolvent into another one can be performed without copying. The ability
of b-unit resolution to work on non-CNF avoids subformulas being torn apart
by repeated CNF transformation. The following example illustrates the idea:
Let Φ = ∃x1∃x2∃x3∃y (¬y∨z)∧(a→ x1)∧(b→ x1)∧(c∧x1 → y)∧(d∧x1 → x3).
Φ contains the b-units T (0) := {(a → x1), (b → x1)}. We combine these into
G(0) := {(a∨b)→ x1}. Then we resolve the units inG(0) with the clauses in Φ by
b-unit resolution and get T (1) := {(c∧(a∨b)→ y), (d∧(a∨b)→ x3)}∪T (0). The
combined b-units are G(1) := {((a∨b)→ x1), (c∧(a∨b)→ y), (d∧(a∨b)→ x3)}.
Further propagation does not lead to new combined b-units. Finally, we resolve
on the clause (¬y∨z) with negative b-part and get T f = ((c∧ (a∨b))→ z) ≈ Φ.
This leads to the algorithm in Listing 1.

Listing 1: ∃HORN∗ to CHorn Transformation

Input Φ(z) = ∃xφ ∈ ∃HORN∗ with free variables z = z0, . . . , zm
and n clauses, each containing a bound variable.

Φb = ∃xφb is unsatisfiable, φ contains exactly one clause
φ1 = (B1 → z0) whose bound part is a negative clause;

T (0) := {(F → x) ∈ φ | x bound, F has only (positive) free vars};
G(0) := cmb(T (0));
for each (F → x) ∈ G(0)
build a monotone circuit cx(0) ≈ F with output labeled x;

for (k = 0 to n) {
T (k + 1) := {ψ[x1/F1, . . . , xr/Fr]→ x | (ψ → x) ∈ φ, (Fi → xi) ∈ G(k),

x1, . . . , xr are the bound variables in ψ, x is bound}
for each (ψ′ → x) ∈ T (k + 1)
build a monotone circuit cψ′(k + 1) ≈ ψ′ = ψ[x1/F1, . . . , xr/Fr]
with output labeled ψ′ by reusing the circuits cxi(k);

G(k + 1) := cmb(G(k) ∪ T (k + 1));
for each (F → x) ∈ G(k + 1)

build a monotone circuit cx(k + 1) ≈ F with output labeled x
by reusing the circuits cxi(k) and cψ′

j
(k + 1);

}

T f := (B1[x1/F1, . . . , xr/Fr]→ z0)
where x1, . . . , xr are the bound variables in the distinguished
clause (B1 → z0) and (Fi → xi) ∈ G(n+ 1);

combine circuits cx1(n+ 1), · · · , cxr (n+ 1) by AND−gates into a
monotone circuit cΦ ≈ B1[x1/F1, . . . , xr/Fr];

Output CHorn circuit c ≈ z0 ∨ ¬cΦ. It follows that c ≈ Φ(z).
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The algorithm requires some initial transformations. Each Φ = Q
∧
i(φ

b
i ∨φ

f
i )

can be converted in polynomial time into an equivalent formula such that every
f-part contains at most one literal. Let φfi = (α ∨ β) and φbi = (ϕ1 ∨ ϕ2) where
ϕ1 and ϕ2 contain the negative and the positive literals, respectively. Then we
introduce a new bound variable y and replace φi with (ϕ2 ∨ ¬y ∨ α) and (ϕ1 ∨
y ∨ β). The monotone or anti-monotone structure of the f-parts and the Horn
structure of the b-parts is preserved. So we assume that the clauses in QHORN∗
(QHORN+, QHORN−, QHORNb) formulas contain at most one free literal such
that the complete clause is a Horn clause (the f-part is a positive literal, the f-part
is a negative literal, the f-part is an arbitrary free literal). Clauses φj = φfj can
be shifted before the prefix, such that Φ ≈ φj ∧Q

∧
i 6=j φi. We therefore focus on

formulas in which every clause contains a bound variable. We also require that
every bound variable has at least one positive and one negative occurrence.

We can decide in linear time whether the conjunction Φb :=
∧
i φ

b
i of all b-

parts is satisfiable, because Horn satisfiability is solvable in linear time. If Φb is
indeed satisfiable, Φ(z) is true for any truth assignment to the free variables and
can be replaced by (z ∨ ¬z). Hence, we assume that Φb is unsatisfiable. Since
any minimal unsatisfiable Horn formula contains exactly one negative clause in
addition to the mixed clauses, we divide the formula into multiple subformulas
that each contain a single negative clause φbi . Suppose Φ has the negative b-parts
φb1, . . . , φ

b
r. Let φ′ := φ−{φ1, . . . , φr}. Then ∃xφ ≈ ∃x(φ′∧φ1)∧ . . .∧∃x(φ′∧φr).

The clauses φi have the form φi = (¬xj1 ∨ . . .∨¬xjs ∨¬zk1 ∨ . . .∨¬zkt ∨ z0)
for free variables zk1 , . . . , zkt , z0. W.l.o.g., we assume φi = (¬xj1 ∨ . . .∨¬xjs ∨z0)
without negative free variables. If that were not the case for some φi, we could
split it into (¬xj1 ∨ . . .∨¬xjs ∨¬zk1 ∨ . . .∨¬zkt ∨ x̃) and (¬x̃∨z0) by introducing
a new bound variable x̃. Now the only clause with negative b-part is (¬x̃ ∨ z0).

From Listing 1, it is clear that the size of the circuit cΦ → z0 is polynomial
in |φ|, because the number of b-units in T (i) and G(i), 0 ≤ i ≤ n + 1, is
each bounded by the number of clauses in Φ, and each circuit that represents
one of these b-units has linear size due to the reusing of existing circuits. The
equivalence of Φ and T f follows in the direction from left to right immediately
from Proposition 1. In the other direction, it is possible to show that for truth
assignments V with V |= T f , V implies enough left hand sides of b-unit clauses
(Fi → xi) ∈ G(n+ 1) such that φ is satisfied by V and xi = 1 for these xi.

Theorem 1. Let Φ = ∃xφ be the input to the transformation in Listing 1.
In polynomial time, the algorithm computes T f with T f ≈ ∃xφ. T f can be
represented by a CHorn circuit of polynomial size, and thus, ∃HORN∗ ≤rp CHorn.

Any Φ ∈ ∃HORN− is in ∃HORN∗ without positive free literals. Then the algo-
rithm produces a disjunction of anti-monotone circuits c1, . . . , cr. The disjunction
of anti-monotone circuits is again anti-monotone, so ∃HORN− ≤rp Canti−mon.
For Φ ∈ ∃HORN+, we replace the free literals with their complements and obtain
a formula in ∃HORN− and then an equivalent anti-monotone circuit. We reverse
the substitution and obtain a monotone circuit. Then ∃HORN+ ≤rp Cmon.
For Φ ∈ ∃HORNb, the f-parts φfi are arbitrary clauses over free variables. For
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each φi, we choose a new variable wi that replaces φ
f
i . The result is in ∃HORN+,

and there is an equivalent monotone circuit c. For each φfi , we build an equiva-
lent circuit ci with output yi and connect it to the input wi of c. The new circuit
is equivalent to Φ, and its size is polynomial in |Φ|. Thus, ∃HORNb ≤rp C.

The well-known transformation of circuits to formulas [1, 2] produces ∃HORNb
formulas. A close look at these for monotone, anti-monotone and CHorn circuits
shows that the above polynomial-size relations also hold in the other direction.
Theorem 2. (Quantified Horn Formulas and Circuits)
By polynomial-time transformations, we have:
1. QHORN+ =rp ∃HORN+ =rp Cmon
2. QHORN− =rp ∃HORN− =rp Canti−mon
3. QHORN∗ =rp ∃HORN∗ =rp CHorn
4. QHORNb =rp ∃HORNb =rp C

The latter constitutes an alternative proof to an earlier result ∃HORNb =rp C
by Anderaa and Börger [1], which is based on the fact that Horn satisfiability is
solvable by a polynomial-time deterministic Turing machine, which in turn can
be encoded by a uniform family of polynomial-size circuits.

4 Conclusion

By developing b-unit resolution for formulas that are not completely in clausal
form, we have shown that various classes of quantified Boolean formulas in which
the bound variables satisfy the Horn property can be transformed into quantifier-
free formulas consisting of only polynomially many subformulas. These have com-
pact encodings as circuits, and vice versa, which shows that both representations
have the same expressive power, even if universal quantifiers are allowed.
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