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Foreword

Quantified Boolean formulas (QBF) are an extension of propositional formu-
las by allowing universal and existential quantifiers over propositional variables.
They are very useful in modeling problems in Artificial Intelligence and Com-
puter Science, for instance to encode planning problems, games and bounded
model checking.

Compared to propositional logic, representations by means of quantified Boolean
formulas are often significantly shorter, easier to read, and more natural. But
the price to be paid for that is an increase of the worst-case complexity of the
satisfiability problem. For QBF, the satisfiability problem (QSAT) is PSPACE-
complete, whereas propositional SAT is known to be NP-complete.

An extension of QBF are so-called dependency quantified Boolean formulas
(DQBF). These formulas are quantified Boolean formulas with dependency
quantification, i.e. for each existential variable we explicitly specify a set of
universal variables which the existential variable depends on. This allows not
only a clearer notation, but also powerful new encoding techniques.

This thesis addresses - from a theoretical as well as from a practical point of
view - methods and techniques for QBF, DQBF and various relevant subclasses
which are helpful for solving the satisfiability problem. It also presents efficient
transformations and novel modeling patterns.

The mathematically well-founded results of this work are thoroughly documen-
ted, but nevertheless easily comprehensible. They are of particular importance
for the development of sophisticated solvers and also in formal methods
for modeling problems by means of propositional logic and its extensions.

I strongly recommend Uwe Bubeck’s outstanding thesis in particular to all
readers interested in research on quantified Boolean formulas.

Hans Kleine Büning
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1. Introduction

Tremendous progress has been made on algorithms for determining the satisfi-
ability of propositional formulas (SAT). In the last 10-15 years, speed-ups of
many orders of magnitude have been achieved by adding intelligent pruning of
the search space to the surprisingly simple, but effective DPLL backtracking de-
cision procedure from the early 1960s [DP60, DLL62] that is still at the core of
many modern SAT solvers (sometimes complemented by BDD-based symbolic
techniques [FKS+04, JS05]). DPLL essentially implements a complete search in
a tree-like search space where in the worst case both possible truth assignments
are considered for each variable in the formula. The original algorithm already
exploits the fact that initial variable assignments quickly imply further assign-
ments on other variables, in particular variables in unit clauses, which makes a
further case distinction on those variables unnecessary. Current SAT solvers use
sophisticated watched literal data structures [MMZ+01] for efficiently identify-
ing such situations and clever heuristics like VSIDS [MMZ+01] for choosing
variables in an order that quickly leads to these inferences. Conflict-driven non-
chronological backtracking [MSS96] enables solvers to directly jump back to
the causes of conflicts, and subproblems that have proven to be unsatisfiable are
avoided in subsequent search by learning suitable conflict clauses [MSS96].

Such techniques appear to be universally useful also for other search or decision
problems besides SAT, and modern SAT solvers provide them out of the box
in highly optimized implementations. Thus, it is not surprising that it has be-
come quite popular in the last few years to solve difficult decision problems by
encoding them as propositional formulas. One of the most prominent examples
is bounded model checking (BMC) [BCCZ99, CBRZ01]. Model checking is
a technique to automatically verify that a hardware or software system adheres
to given requirements. This is accomplished by analyzing the state transition
space of the system with respect to a formal specification of the requirements.
SAT-based model checking attempts to speed up the process by encoding both
the specification checks and the sequential system behavior over a finite interval
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1. Introduction

of time steps into propositional formulas. Their satisfiability is then determined
by a SAT solver. Figure 1.1 illustrates the process from a system-theoretic view-
point. Another prominent application of SAT-based problem solving is plan-
ning [KS92, KS96]. A very recent example is OpenSUSE Linux 11.1 being
shipped with a package manager that uses an embedded SAT solver to check
package dependencies, and a similar project is in development for Eclipse IDE
plugins.

1

SystemRequirements

Propositional Encoding / Logical Model

System

Model

Formal

Specification

Model Properties
Solving

Model Behavior
Verification

or Simulation

System Behavior
Experiment

ModelingFormalization

Logic Modeling
Interpretation

Interpretation

Answer

Interpretation

Figure 1.1.: General principle of SAT-based bounded model checking

The success of such applications depends in particular on the quality of the
propositional encodings. But finding good encodings can be a difficult task,
because propositional logic itself is not expressive enough to model complex
situations in a direct way. For example, an important subproblem in bounded
model checking is to determine whether a tuple (v0, ...,v2k) of vertices in a di-
rected graph forms a continuous path from v0 to v2k . At this point, we only
want to have a brief look at this problem, before we cover it in more detail in
Section 4.4. We assume that vi is represented as a vector of Boolean variables
vi,0, ...,vi,n, n ≥ k, which we indicate by writing vi in bold. If the transition
relation δ of the graph is already given as a propositional formula, the path is
continuous if and only if δ (vi,vi+1) is true for all i = 0, ...,2k−1. This “for all”
cannot be encoded directly in propositional logic and must thus be unrolled as
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1.1. Quantification and Expressiveness

in the following representation [BCCZ99]:

φ(v0, ...,v2k) := δ (v0,v1)∧δ (v1,v2)∧ ...∧δ (v2k−1, ...,v2k)

Actual formulas will be substituted for δ , which means it will be hard to rec-
ognize the above pattern in the resulting formula. But such an encoding is not
only less intuitive. The multiple copies of δ are also very space-consuming,
considering that δ represents the whole structure of a possibly very large graph.
Then it can easily happen that the resulting formula is by far too voluminous
for the capabilities of even the most advanced SAT solvers. In particular, the
memory requirements may quickly exceed feasible amounts [ASV+05], which
can hardly be offset by allowing more computation time. These observations
suggest that we might need a more expressive language for our encodings. Of
course, we can expect that this increases the complexity of the corresponding
satisfiability problem, but it might allow us to trade time for space.

1.1. Quantification and Expressiveness

Quantified Boolean formulas (QBF) generalize propositional formulas by al-
lowing variables to be quantified either universally or existentially, whereas all
variables are implicitly existentially quantified in propositional logic. A univer-
sally quantified formula ∀x φ(x) is defined to be true if and only if φ(0) is true
and φ(1) is true. Similarly, an existentially quantified formula ∃y φ(y) is true if
and only if φ(0) or φ(1) is true. If free (unquantified) variables are also allowed,
we indicate this with a star ∗ and write QBF∗. Quantified Boolean formulas in
conjunctive normal form (CNF) are denoted QCNF or QCNF∗ formulas. A de-
tailed definition of the syntax and semantics of quantified Boolean formulas will
be given in Chapter 2. In addition, Appendix A provides a brief overview over
all classes of formulas which are considered in this work.

Quantification allows natural encodings of problems with inherent forall/exists
semantics. The previous example of path connectivity can then be encoded as
follows [DHK05]:

Φ(v0, ...,v2k) := ∀u∀w

 2k−1∨
i=0

((u = vi)∧ (w = vi+1))

→ δ (u,w)

3



1. Introduction

We can observe that the formula now closely matches the informal statement that
all successive pairs of vertices must be connected by the transition relation δ ,
which is more intuitive than the unrolled variant. The formula structure will still
be easily recognizable after concrete transition relations have been substituted
for δ . Most importantly, this encoding requires only one instance of δ , which
makes it much more concise than the propositional representation.

If we only want to know whether two vertices v0 and v2k are connected by some
path of length 2k, we can quantify v1, ...,v2k−1 existentially [DHK05]:

Φ
′(v0,v2k) := ∃v1...∃v2k−1∀u∀w

 2k−1∨
i=0

((u = vi)∧ (w = vi+1))

→ δ (u,w)

Propositional logic cannot concisely express the fine distinction between these
two statements.

Even if the problem to be encoded does not contain any obvious forall/exists
semantics, quantification may be used to introduce auxiliary variables that can
abbreviate repeating subformulas. For example, consider the following proposi-
tional formula:

ψ(A, ...,F) := (A∨¬B∨C∨D)∧ (A∨¬B∨C∨¬E)∧ (A∨¬B∨C∨F)

Here, the part A∨¬B∨C repeats in multiple clauses. By introducing a new
existentially quantified variable y as an abbreviation for A∨¬B∨C, we can get
a shorter formulation:

Ψ(A, ...,F) := ∃y (A∨¬B∨C∨¬y)∧ (y∨D)∧ (y∨¬E)∧ (y∨F)

The important point to notice is that both formulas ψ and Ψ have exactly the
same free variables. Furthermore, both formulas exhibit the same truth value
for the same truth assignments to the free variables, so we can treat the two
formulas as equivalent. In propositional logic, it is also possible to add new
(implicitly existential) variables in a similar way (the technique is well known
from the Tseitin transformation [Tse70]), but the resulting formula is usually
only satisfiability-equivalent to the original formula in the propositional case.

Universally quantified auxiliary variables allow the abbreviation of multiple in-
stantiations of a single subformula with different arguments, a technique that
is not directly possible in propositional logic. An example is the above path
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1.1. Quantification and Expressiveness

connectivity encoding Φ which compresses multiple instantiations of the sub-
formula δ for different arguments (v0,v1), ...,(v2k−1,v2k). With clever combi-
nations of universally and existentially quantified auxiliary variables, quantified
Boolean formulas can effectively condense structures that show repetitions or
similarity. A small compilation of the most important ideas is presented as part
of the fundamentals description in Section 2.6.

In [JB07], different bounded model checking encodings are compared, with the
QBF∗ representations often being drastically more compact than the best propo-
sitional variants. For example, the best propositional encoding of the instance
“periodic.N” from the CMU SMV distribution has a size of 28.1 megabytes for
induction depth k = 96, but only 2.1 MB in QBF∗. Similarly, [ASV+05] con-
siders hierarchical debugging with propositional and QBF encodings, where the
largest example requires more than 300 MB of memory in the propositional case,
versus 57 MB for QBF, with the gap growing asymptotically as the examples are
getting larger.

As suggested earlier, there is unfortunately a price to pay for the compactness of
QBF∗. Determining the satisfiability of formulas in QBF or QBF∗ is PSPACE-
complete, which is assumed to be significantly harder than the NP-completeness
of the propositional SAT problem. On the other hand, many interesting veri-
fication problems are also PSPACE-complete, e.g. propositional linear tempo-
ral logic (LTL) satisfiability [SC85] or symbolic reachability in sequential cir-
cuits [Sav70]. Thus it seems quite natural to solve such problems by encoding
them as quantified Boolean formulas. Furthermore, QBF∗ solving in practice
has made impressive progress over the last few years. One reason is that some
of the most successful improvements of propositional SAT have been lifted to
QBF∗ as well. Examples include Q-resolution [FKKB95], watched literal data
structures [GGN+04] or conflict and solution learning [GNT02]. In addition,
clever new approaches specific to QBF∗ have been suggested, such as symbolic
skolemization [Ben05a], universal expansion [Bie05] or parallel search tech-
niques [FMS00].

Some of these operations, e.g. Q-resolution, are difficult to handle without ad-
ditional restrictions on the occurrence of quantifiers. It is therefore generally
assumed that all quantifiers occur at the beginning of the formula in a distinct
prefix, followed by the propositional matrix. Interestingly, the hardness of quan-
tified Boolean formulas appears to depend in particular on the complexity of
the quantifier prefix, and that holds from both a practical perspective as well as

5



1. Introduction

from a complexity-theoretic viewpoint. For a hierarchy of complexity classes,
the so-called polynomial-time hierarchy, it has been shown by Stockmeyer and
Wrathall [Sto76, Wra76] that there is a close relationship between the levels in
this hierarchy and the number of quantifier alternations in the prefix of quanti-
fied Boolean formulas (for more details, see Section 2.3). It is widely believed
that complexity classes from a lower level of the hierarchy are properly included
in classes from higher levels, which means the decision problem of quantified
Boolean formulas appears to become more difficult with each additional block
of quantifiers.

From a practical perspective, a purely existentially quantified Boolean formula
can be solved with one call to an ordinary SAT solver. The addition of a uni-
versal quantifier requires considering both possible truth values for it, so that it
might be necessary to make two calls to the SAT solver. Similarly, an extension
of DPLL to QBF∗ may need to recursively solve both subproblems by branching
on the universal. At the same time, the variable ordering imposed by the nesting
of the quantifiers must be respected. In a formula with prefix ∃x∀y∃z, z may be
assigned different values depending on the value of y, but the value of x must be
chosen first and is the same for all values of y. That means we cannot branch on
y before assigning x, which severely limits the effectiveness of variable selection
heuristics in (Q)DPLL-based solvers. We will later see that approaches like uni-
versal expansion or symbolic skolemization are also affected by more difficult
prefixes.

1.2. Thesis Goals and Contributions

Despite the obvious progress that QBF∗ solvers have made, there is still a clear
performance gap between them and their SAT brethren, which is not really sur-
prising given the additional complexity described in the previous paragraph.
That means QBF∗ can be seen as a tradeoff between computation time on the
one hand and benefits like more natural and more compact encodings on the
other hand. More natural encodings are probably less error-prone and require
less engineering time. Most importantly, more compact encodings allow solv-
ing larger problems for which propositional approaches exceed feasible memory
bounds. However, this is not a 0/1 decision for or against quantification. Instead,
it appears that more compact encodings require more quantifiers and more alter-
nations of quantifier blocks. For the example of continuous paths in graphs, we

6



1.2. Thesis Goals and Contributions

will later encounter a second QBF∗ encoding that is even more concise than the
one presented above, but on the other hand requires an unbounded number of
quantifier alternations.

In general, however, it is not well understood how the complexity of the prefix
is related to the expressiveness of the corresponding class of formulas, and how
that relationship is influenced by the formula structure. Besides assumptions
about the polynomial-time hierarchy, only concrete examples and some general
encoding techniques like the ones mentioned in the previous section are avail-
able. It is important to point out that by expressive power or expressiveness,
we mean the ability to provide short encodings. This differs from descriptive
complexity theory [Imm99], where expressiveness usually considers the gen-
eral ability to represent a given property by a certain class of formulas. In that
sense, quantified Boolean formulas are equally powerful as propositional logic,
because quantifiers are only abbreviations which can always be expanded as ex-
plained below. But that may cause a blowup in formula size, which is why we
focus specifically on the size of encodings. We are convinced that a better un-
derstanding of the expressive power of quantification in this respect is necessary
for efficient and successful applications of QBF∗. There are in particular three
questions in which we are interested:

1. How does the expressiveness of quantifiers depend on the structure of the
propositional matrix of the formula?

2. Is it possible to simplify given quantifier prefixes without a significant loss
of compactness?

3. Which usage patterns of quantifiers lead to encodings with a good tradeoff
between compactness and complexity?

Questions 2 and 3 appear to be closely related: results that allow the simplifi-
cation of given formulas should also be helpful as guidelines for suitable new
encodings. Question 1 leads to the most important contribution of this thesis.
We identify relationships between the structure of the formula matrix and the
expressiveness of quantifiers, and we show how these relationships can be used
for suitable transformations into simplified representations, which establishes a
connection between the first question and the other two.

We describe the behavior of quantifiers by Boolean function models (originally
introduced in [KBSZ04] and explained in detail in Section 2.7). Similar to
Skolem functions in predicate logic, an existentially quantified variable yi is
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1. Introduction

mapped to a Boolean function fyi over those universal variables whose quanti-
fiers precede the quantifier of yi and over the free variables (if applicable). These
functions fyi are represented as propositional formulas. The goal is to character-
ize the expressive power of an existential quantifier by specifying the structure
of its associated model function. Conversely, the role of a universal quantifier
can be determined by investigating its occurrences in model functions of exis-
tentially quantified variables. Existing work shows that the simple classes of
quantified 2-CNF formulas and quantified Horn formulas without free variables
have models of a very restricted structure [KBSZ04, KBZ05]. We contribute
results about more complicated classes like quantified Horn formulas with free
variables or QCNF∗ formulas.

Boolean function models can obviously be used to eliminate existential quan-
tifiers ∃yi by replacing all occurrences of yi in the matrix with the correspond-
ing propositional representation of fyi . However, this requires computing the
exact (and potentially exponentially large) specification of the model function,
not just some general properties about its structure. Can another technique of
quantifier elimination make better use of information about the structure of
model functions? Quantification in QBF∗ is defined according to the equiva-
lences ∃y Φ(y,z) ≈ Φ(0,z)∨Φ(1,z) (the quantified version of the well-known
Shannon Expansion for propositional logic) and the dual universal expansion
∀x Φ(x,z)≈ Φ(0,z)∧Φ(1,z). By using these equivalences, a quantifier can be
expanded by duplicating the remaining formula. Care must be taken to duplicate
also subsequent quantifiers that are in the scope of the expanded quantifier.

It is clear that both expansions may cause exponential growth when applied re-
peatedly. But for QCNF∗ formulas, the expansion of an existential quantifier
usually requires a retransformation into CNF, which might make the resulting
formula much larger. We will later see that Q-resolution as an alternative to elim-
inate existential quantifiers is also very expensive in general. We make the im-
portant observation that for clausal formulas, universal quantifiers are typically
cheaper to eliminate, although their expansion is still exponential in the worst
case. Conversely, this suggests that universal quantification itself is slightly less
powerful in CNF formulas than existential quantification. This is also backed by
the obvious simplicity of the satisfiability problem for purely universally quan-
tified QCNF formulas. We will later show that the imbalance between univer-
sal and existential quantification is particularly obvious for Horn formulas and
generalizations thereof. Accordingly, we focus specifically on the expansion of
universals in clausal formulas. One of our central ideas is to simplify universal
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expansion by exploiting restrictions on the structure of model functions, which
in turn can be established by considering the formula structure.

The remainder of this section provides a brief overview of our main results in a
more informal style. Fully detailed results, along with lots of others not men-
tioned here, and discussions of existing work are given in the corresponding
main chapters.

One particular focus of our work is on quantified Horn formulas, that is, for-
mulas in which each clause contains at most one positive literal. How does this
restriction influence the behavior of the quantifiers? Detailed characterizations
of function models for formulas without and with free variables allow us to prove
that the behavior of the existential quantifiers depends only on the cases in which
at most one of the universally quantified variables is zero. By considering only
these cases, universal expansion can be simplified dramatically. The result even
holds if the free variables do not satisfy the Horn property.

Main Result 1. QCNF∗ formulas with unrestricted free literals and at most one
positive quantified literal per clause (QHORNb) can be transformed in quadratic
time into equivalent purely existentially quantified formulas of quadratic length.

This class of formulas has interesting applications. We demonstrate that it can
be used to encode graph structures and propositional CNF transformations in a
natural way. The latter implies that the class QHORNb is expressive enough to
represent arbitrary (i.e. non-CNF) propositional formulas in polynomial length.
We also obtain a new compact graph-based CNF transformation that nicely pre-
serves and visualizes the structure of the propositional input formula.

We believe that quantification is most valuable in those cases where quantifiers
have a global impact on the whole formula. Local quantifiers might still be use-
ful for encoding problems in a natural way, but they do not contribute much
to the compactness of the encoding, yet they can make solving the formulas
much harder in practice. Accordingly, we suggest a preprocessing for QCNF∗

formulas which attempts to eliminate as many of those cheap quantifiers as pos-
sible within given bounds. Again, we focus on universal expansion and apply
Q-resolution specifically to reduce the costs of universal expansion.

9
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Main Result 2. We present a preprocessing of QCNF∗ formulas by expanding
a suitable selection of universally quantified variables with bounded expansion
costs. Experiments with well-known problems from the QBFLIB formula col-
lection demonstrate that this preprocessing is very effective on simplifying the
prefixes and can significantly improve the performance of state-of-the-art QBF
solvers.

A problem with quantified Boolean formulas is the enforcement of a linear ar-
rangement of quantifiers in the prefix. That makes it usually unavoidable to
place existential quantifiers within the scope of semantically unrelated universal
quantifiers. Of course, it is not necessary for a solver to consider different values
for such existentials depending on assignments to unrelated universals. But how
can a solver know which existentials really depend on a given universal?

Main Result 3. In QCNF∗ formulas, compact sets of dependent existentials can
be obtained by computing transitive closures of local connectivity between vari-
ables in common clauses in consideration of variable polarity. In the best case,
this can reduce the number of dependent existentials, and thus the arity of model
functions, by an arbitrarily large factor in comparison to existing approaches.

An alternative to recovering variable dependencies from given formulas is to ex-
tend quantified Boolean formulas with explicitly given dependencies, known as
dependency quantified Boolean formulas (DQBF or DQBF∗ with free variables).
This allows new modeling patterns, which we demonstrate with an encoding
of path connectivity that is even more compact than the previously mentioned
QBF∗ encodings. While dependency quantification generally causes another in-
crease in complexity, we consider easier subclasses defined by restrictions on the
prefix structure. In addition, we show that important techniques like universal
quantifier expansion and our results on Horn formulas can be lifted naturally to
these formulas.

Main Result 4. Dependency quantified Horn formulas DQHORN∗ constitute a
tractable subclass of DQBF∗.

10
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1.3. Document Structure

Before we delve into our investigations, we briefly review some of the theory of
quantified Boolean formulas in Chapter 2. In particular, we provide a collection
of encoding techniques and introduce Boolean function models.

Our contributions are distributed onto three main chapters. Chapter 3 focuses
on quantified Horn formulas without and with free variables and the previously
mentioned generalization QHORNb. Chapter 4 considers dependency quantified
Boolean formulas that can explicitly indicate variable dependencies. Chapter 5
begins with a theoretical part that refines universal expansion in QCNF∗ formu-
las and then presents our preprocessing approach based on bounded universal
expansion.

Each of these main chapters starts with a short abstract, which can safely be
skipped by the reader if a more gentle introduction to the topic is desired. The
abstracts also contain pointers to own peer-reviewed publications on which the
corresponding chapter is based. The actual text then begins with a motivation
section. The second section is always “Research Goals and Related Work”,
where we introduce our contributions on the topic and show how they are con-
nected to existing work. Each chapter also has its own conclusion, which is
complemented in Chapter 6 by a brief global summary with suggestions for fu-
ture work.

For quick reference, Appendix A provides a collection of the definitions of all
formula classes which are considered in this document. Appendix B contains an
abstract of the whole thesis.
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2. Fundamentals

In this chapter, we recall the necessary basic concepts and terminology of quan-
tified Boolean formulas and clarify the notation that we are going to use. In
addition, we provide a collection of encoding techniques and introduce Boolean
function models. For a more detailed introduction to quantified Boolean formu-
las, we refer the reader to [KBB09, KBL99].

2.1. Syntax and Semantics

A quantified Boolean formula is a propositional formula or a formula of the form
∀x φ(x) or ∃y φ(y) where x,y are propositional variables and φ is a propositional
or quantified Boolean formula. ∀x φ(x) is defined to be true if and only if φ(0)
is true and φ(1) is true. Variables which are bound by universal quantifiers are
called universal variables and are usually given the names x1, ...,xn. Similarly,
∃y φ(y) is defined to be true if and only if φ(0) or φ(1) is true. In this case, y is
called an existential variable. Those usually have names y1, ...,ym.

In our notation, we assume that the logical connectives have a higher binding
priority than the quantifiers, so we can leave out parentheses if a quantifier is
supposed to span both operands of a binary connective: ∀x φ ∧ψ := ∀x (φ ∧ψ).
On the other hand, we need parentheses to indicate that the scope of a quantifier
covers only one subformula, e.g. (∀x φ) ∧ ψ .

A quantified Boolean formula Φ is in prenex form if Φ = Q1v1...Qkvk φ with
quantifiers Qi ∈ {∀,∃} and a propositional formula φ . We call Q := Q1v1...Qkvk
the prefix and φ the matrix of Φ. Unless mentioned otherwise, we assume that
QBF formulas are always in prenex form.

The matrix of a quantified Boolean formula often has a particular structure. It is
in negation normal form (NNF) if and only if every negation occurs immediately
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in front of a variable. A literal is then a positive propositional variable (v) or a
negated variable (¬v), and a clause C = l1 ∨ ...∨ lh is a disjunction of literals.
Since the order of literals in a clause is irrelevant, we can also consider a clause
as a set C = {l1, ..., lh} of literals. A formula is in conjunctive normal form (CNF)
if and only if it is a conjunction of clauses φ =C1∧ ...∧Cq. Again, we also use
set notation φ = {C1, ...,Cq}. The dual disjunctive normal form (DNF) denotes
a disjunction of conjunctions of literals. Prenex formulas with arbitrary matrix
can be transformed into one of these normal forms by applying propositional
equivalences like the laws of associativity, distributivity or De Morgan on the
matrix. For a given formula class or normal form K, we denote by QK the class
of quantified Boolean formulas whose matrix belongs to K. For example, QCNF
is the class of QBF formulas with matrix in CNF, and QDNF denotes formulas
with matrix in DNF. We use italics for formula and complexity classes.

Variables which are not bound by quantifiers are free variables. Formulas with-
out free variables are said to be closed. If free variables are allowed, we indicate
this with an additional star ∗ after the name of the formula class. Accordingly,
QBF is the class of closed quantified Boolean formulas, and QBF∗ denotes quan-
tified Boolean formulas with free variables (analogously, we have QCNF and
QCNF∗, etc.). We write Φ(z1, ...,zr) = Q φ(z1, ...,zr) or Φ(z) = Q φ(z) for a
QBF∗ formula with prefix Q, matrix φ and free variables z = (z1, ...,zr). We de-
note by vars(Φ) the set of all variables that occur in Φ, and freevars(Φ) contains
all free variables in Φ.

A closed QBF formula is either true or false. It is true if and only if there exists an
assignment of truth values to the existential variables depending on the preceding
universal variables such that the propositional matrix of the formula is true for
all values of the universal variables. For example, Φ = ∀x∃y (x∨ y)∧ (¬x∨¬y)
is true, because by choosing y = 1 when x = 0 and y = 0 when x = 1, we can
satisfy the formula for all values of x. More formally, we can substitute the
formula f (x) = ¬x for all occurrences of y in the matrix of Φ, written as Φ[y/ f ],
such that the resulting matrix (x∨¬x)∧ (¬x∨ x) is tautological.

The truth value of a QBF∗ formula depends on the value of the free variables. A
QBF∗ formula Φ(z) is satisfiable if and only if there exists a truth assignment
t(z) := (t(z1), ..., t(zr)) ∈ {0,1}r to the free variables z = (z1, ...,zr) for which
Φ(t(z)) is true. Here, Φ(t(z)) denotes the closed QBF formula that results from
substituting the truth values t(z1), ..., t(zr) for the free variables z1, ...,zr. For ex-
ample, the formula Φ(z) = ∀x∃y (x∨y∨¬z)∧(¬x∨¬y)∧(¬y∨z) is satisfiable:
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for z = 1, we can choose y = ¬x, and substituting z and y produces the tauto-
logical matrix (x∨¬x∨ 0)∧ (¬x∨ x)∧ (x∨ 1). In that particular example, the
formula is also true for z = 0: in this case, we can choose y = 0, and all clauses
are satisfied. We could combine both cases and say that we choose y = ¬x∧ z.
Such an assignment will later be called an equivalence model function.

2.2. Basic Concepts and Notation

Two QBF∗ formulas Ψ1(z1, ...,zr) and Ψ2(z1, ...,zr) are said to be equivalent
(Ψ1 ≈ Ψ2) if and only if Ψ1 |= Ψ2 and Ψ2 |= Ψ1, where semantic entailment
|= is defined as follows: Ψ1 |= Ψ2 if and only if for all truth assignments
t(z) = (t(z1), ..., t(zr)) ∈ {0,1}r to the free variables z = (z1, ...,zr), it holds that
Ψ1(t(z)) = 1 ⇒ Ψ2(t(z)) = 1.

A weaker form of equivalence is satisfiability equivalence, where the two for-
mulas may have different free variables. Two QBF∗ formulas Ψ1(z1, ...,zr) and
Ψ2(z′1, ...,z

′
s) are satisfiability-equivalent (Ψ1 ≈SAT Ψ2) if and only if it holds

that Ψ1 is satisfiable ⇔ Ψ2 is satisfiable. Notice that equivalence and satisfia-
bility equivalence coincide for closed formulas: Ψ1 ≈ Ψ2 ⇔ Ψ1 ≈SAT Ψ2 for
Ψ1,Ψ2 ∈ QBF.

Without loss of generality, we assume that all variable names in a prenex QBF∗

formula Φ(z) = Q φ(z) are unique, that is, no variable appears twice in the
prefix Q. We call successive quantifiers of the same kind in Q a quantifier block.
Blocks are defined to be maximal, such that subsequent blocks Si and Si+1 are
always associated with different kinds of quantifiers. That means if Q has the
form Q = ∀x1,1...∀x1,n1∃y1,1...∃y1,m1 ...∀xr,1...∀xr,nr∃yr,1...∃yr,mr with ni ≥ 1 and
mi ≥ 1 for i = 1, ..,r, we simply write Q = ∀X1∃Y1 ...∀Xr∃Yr with quantifier
blocks Xi = (xi,1, ...,xi,ni) and Yi = (yi,1, ...,yi,mi), i = 1, ..,r. According to their
sequence in the prefix, quantifier blocks are ordered linearly S1 < ... < Ss. We
call Ss the innermost and S1 the outermost block. Occasionally, we also treat
the blocks as sets and apply the basic set operations and relations on them. That
allows us to write expressions like v ∈ Xr ∪Yr, which means v is a variable that
is bound in the innermost existential or universal quantifier block.

The order of the quantifier blocks induces a partial order on the variables. Let l1
and l2 be two literals in Φ, then we define l1 < l2 if the variable in l1 occurs in a
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quantifier block which precedes the block in which the variable of l2 appears. If
both variables occur in the same block, the order of the literals is undefined. We
say that a universally quantified variable xi dominates an existential variable y j
if and only if xi < y j. Equivalently, we can also say that y j depends on xi.

With |Φ|, we denote the length of a quantified Boolean formula Φ, which is de-
fined to be the number of occurrences of variable symbols, including the quan-
tified variables in the prefix. For example, Φ(z) = ∀x∃y (x∨ y)∧ (¬x∨¬y)∧
(¬y∨ z) has length |Φ|= 8.

Some additional useful notation is the following:

For a propositional formula f and ε ∈ {0,1}, we let f ε :=
{
¬ f , ifε = 0

f , ifε = 1 .

With AB := (a1, ...,am,b1, ...,bn), we denote the concatenation of two tuples
A = (a1, ...,am) and B = (b1, ...,bn).

2.3. Subclasses and Complexity Results

We have already pointed out in the introduction that QBF∗ satisfiability is a
PSPACE-complete problem [MS73]. It is easy to see that QCNF∗ and even
QDNF∗ are still PSPACE complete. But there are also interesting subclasses
of QBF∗ that belong to a lower or even tractable complexity class. Such sub-
classes are typically defined by restrictions on the structure of the prefix or by
restrictions on the formula structure.

An obvious restriction on the structure of the prefix is to limit the number of
different prefix blocks. For k∈N, we let the prefix type Σk denote QBF∗ formulas
with a prefix that has k quantifier blocks and begins with an existential one.
Analogously, Πk is the class of QBF∗ formulas with k prefix blocks where the
outermost block is universal. Σ0 =Π0 denote the class of propositional formulas.
For example, Φ = ∃y1∀x∃y2 φ with a propositional matrix φ is a formula in Σ3.

These prefix types are closely related to classes of the polynomial-time hierarchy
which was introduced in [MS72] as follows for k ≥ 0:

∆P
0 := ΣP

0 := ΠP
0 := P

ΣP
k+1 := NPΣP

k , ΠP
k+1 := co-ΣP

k+1, ∆P
k+1 := PΣP

k
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Here, NPA (respectively PA ) is the class of problems which can be decided in
polynomial time by a nondeterministic (respectively deterministic) Turing ma-
chine augmented by an oracle for a complete problem in A. Obviously, classes
on higher levels include classes from lower levels, e.g. ΣP

k ⊆ ∆P
k+1 ⊆ ΣP

k+1. It is
commonly assumed that these inclusions are proper.

In [Sto76, Wra76], it has been shown that the satisfiability problem for quantified
Boolean formulas with prefix type Σk is ΣP

k -complete (k ≥ 1). Analogously, it is
ΠP

k -complete for Πk formulas (k ≥ 1).

Restrictions on the formula structure are well-known from propositional logic.
In this work, Horn formulas play a prominent role. The class of propositional
Horn formulas (HORN) contains all CNF formulas with at most one positive
literal per clause. For a constant k ≥ 2, k-HORN means HORN formulas with at
most k literals per clause.

With QHORN (Qk-HORN, respectively), we denote quantified (k-)Horn formu-
las, that means formulas

Φ = Q1v1...Qkvk φ(v1, ...,vk)

where φ ∈ HORN (k-HORN, respectively). Formulas

Ψ(z1, ...,zr) = Q1v1...Qkvk ψ(v1, ...,vk,z1, ...,zr)

with free variables which also satisfy the Horn property, that is ψ ∈ HORN
(k-HORN, respectively), are called quantified (k-)Horn formulas with free vari-
ables, abbreviated QHORN∗ (Qk-HORN∗, respectively).

From the quantified version of Schaefer’s dichotomy theorem [Sch78] (fully
proven only later, e.g. in [Dal97, CKS01]), it follows that exactly the follow-
ing local restrictions on the structure of clauses in QCNF∗ formulas produce
tractable subclasses:

• Horn clauses (at most one positive literal)

• anti-Horn clauses (at most one negative literal)

• Krom clauses (at most two literals)

• XOR clauses (clauses of the form x1⊕ ...⊕ xn = 1 or x1⊕ ...⊕ xn = 0)

Of these subclasses, Horn formulas appear to be the most interesting and the
most useful. We will study them comprehensively in Chapter 3.
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2.4. Simplification Techniques

There are various standard equivalence-preserving simplification techniques for
QCNF∗ formulas. Forall reduction or Universal reduction [KBL99] allows us to
remove from a non-tautological clause C = ϕ ∨xε a universal literal xε if x does
not dominate any existential variable in ϕ . If ϕ contains no existential or free
variables (C is purely universal), we get an empty clause, and Φ is unsatisfiable.
Consider the example ∃y1∀x∃y2 (¬y1∨¬x)∧ (y1∨¬x∨y2)∧ (z∨x). In the first
clause, x does not dominate y1 and can be removed. In the second clause, x
dominates y2, so the clause remains unchanged. In the last clause, z is a free
variable, but there is no existential variable dominated by x, so x can be deleted.
We have the resulting formula ∃y1∀x∃y2 ¬y1∧ (y1∨¬x∨ y2)∧ z.

Unit propagation and pure literal detection are well known for propositional
formulas. They can also be applied to QCNF∗ formulas [CSGG02]:

1. If Φ contains a clause C = yε with a single existential literal yε , then log-
ical equivalence is preserved when we assign y = ε by replacing all oc-
currences of yε in φ with 1 and all occurrences of y1−ε with 0. In the
forall-reduced formula from the last paragraph, ¬y1 is an existential unit
which can be propagated. We obtain the formula ∀x∃y2 (¬x∨ y2)∧ z.

2. If Φ contains a quantified variable v which occurs only positively or only
negatively in φ , then logical equivalence is preserved in the following
cases:

a) if v is existentially quantified and all clauses containing v are deleted
from Φ.

b) or if v is universally quantified and the occurrences of v are removed
from all clauses of φ .

In the formula from Item 1, y2 occurs only positively, so we can delete the
first clause. We can conclude that the formula is equivalent to just z.

We say that a clause Ci subsumes another clause C j if and only if every literal in
Ci also occurs in C j, that means Ci ⊆C j when considering clauses as sets. Then
it is clear that the satisfiability of Ci of immediately implies the satisfiability of
C j, thus we can remove such subsumed clauses from a QCNF∗ formula.

Another standard technique is the elimination of dual binary clauses. A clause
Ci = l1 ∨ ...∨ lk is dual to another clause C j if and only if C j consists of the
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negated literals in Ci, that is C j = ¬l1∨ ...∨¬lk. If a QCNF∗ formula Φ contains
a pair of dual binary clauses over variables v1 and v2, we can conclude that
v1 ↔ v2 or v1 ↔ ¬v2. In the first case, every occurrence of vε

2 in Φ can be
replaced with vε

1, in the second case vε
2 with v1−ε

1 , always assuming that v1 < v2
or both occur in the same quantifier block. If v2 < v1, both substitutions are
performed in the inverse direction. This guarantees that no additional degrees of
freedom are introduced. To preserve equivalence, we also need the prerequisite
that all clauses in Φ are forall-reduced, so that the procedure only instantiates
existentials, but not universals. For example, consider the following QCNF∗

formula: Φ = ∀x∃y (x∨¬y)∧ (¬z∨ x∨ y)∧ (¬x∨ y). The first clause is dual to
the last one, so x↔ y and Φ≈ ∀x (x∨¬x)∧ (¬z∨ x∨ x)∧ (¬x∨ x)≈ ¬z.

For more details on the above simplifications and some hints on efficient imple-
mentations, we refer the reader to [CSGG02, Bie05].

2.5. Q-Resolution

Q-resolution [FKKB95] extends the concept of propositional resolution to quan-
tified Boolean formulas. Resolution is based on the idea of combining a clause
with a positive literal l with another clause that contains ¬l, so that the comple-
mentary literals l and ¬l disappear. In Q-resolution, we resolve on literals over
free or existentially quantified variables.

Definition 2.5.1. (Q-Resolution)
Let Φ = Qφ be a formula in QCNF∗ with matrix φ and prefix Q. Let φ1 and
φ2 be non-tautological clauses of φ , where φ1 contains the existential or free
literal y and φ2 contains the literal ¬y. We obtain a Q-resolvent σ of φ1 and φ2
by applying the following steps (1) to (3):

1. For i = 1,2, eliminate all occurrences of universal literals in φi which
do not dominate any existential literal which occurs in φi. The resulting
clauses are denoted by φ ′1 and φ ′2.

2. Eliminate all occurrences of y in φ ′1 and all occurrences of ¬y in φ ′2. We
obtain φ ′′1 and φ ′′2 .

3. σ := φ ′′1 ∨φ ′′2 .
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We write Φ | 1
Q-Res Q(φ ∧σ) or Φ | 1

Q-Res σ , and | *
Q-Res denotes the reflexive

and transitive closure of Q-resolution derivability.

The elimination of universals which do not dominate any existential in the same
clause (Item 1 in Definition 2.5.1) has already been presented independently
of Q-resolution as the universal reduction simplification rule. We must include
it here, because Q-resolution is only refutation complete for arbitrary QCNF∗

formulas if universal reduction is applied in each resolution step. In the unsatis-
fiable formula

Φ = ∃y1∀x1∀x2∃y2 (y1∨ x1∨ y2)∧ (¬y1∨¬x1∨ y2)∧ (x2∨¬y2)

initial universal reduction cannot yield any simplifications, and we cannot re-
solve on y1 due to the tautological occurrences of x1 and ¬x1. We call such
complementary literals blocking universals. If we resolve on y2 instead, we ob-
tain the two resolvents (y1 ∨ x1 ∨ x2) and (¬y1 ∨¬x1 ∨ x2). Now we can only
resolve on y1 if we first apply universal reduction on both resolvents, which
produces the simplified clauses (y1) and (¬y1) that subsequently resolve to the
empty clause.

The previous example also shows that the exchange lemma for resolution in
propositional formulas [KBL99] no longer holds for QCNF∗. In the example,
resolving first on y2 and then on y1 leads to the empty clause, whereas direct Q-
resolution on y1 leads to a tautological clause. Such blockages usually require a
detour of several steps.

It is well known that unit resolution is refutation complete for propositional Horn
formulas. This restriction can be adapted in a straightforward way to the quan-
tified case. Q-unit resolution is Q-resolution where one of the parent clauses is
required to be an ∃-unit clause. A clause is said to be ∃-unit if and only if it
contains at most one free or existentially quantified literal in addition to an arbi-
trary number of universal literals. [FKKB90] has shown that Q-unit resolution
is refutation complete for a generalization of quantified Horn formulas called
QEHORN∗, which includes all QCNF∗ formulas that are conjunctions of Horn
clauses when ignoring the universally quantified literals. Without loss of refu-
tation completeness, the ∃-unit requirement can be augmented by requiring the
∃-unit clause to contain a positive free or existential literal, which is the so-called
Q-pos-unit resolution [KBL99].
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It is possible to eliminate an existential quantifier by performing all possible
Q-resolutions on it [DP60, KBL99, Bie05].
Consider the example Φ(z) = ∀x1∀x2∃y1∃y2 (z∨ y1 ∨ y2)∧ (¬x1 ∨¬y1 ∨ y2)∧
(x2∨¬y2)∧ (y1∨¬y2)∧ (¬z∨¬y1).
Then Φ(z)≈ ∀x1∀x2∃y1 (z∨ x2∨ y1)∧ (¬x1∨ x2∨¬y1)∧ (z∨ y1)∧ (¬z∨¬y1).
Here, ∃y2 is eliminated by resolving all clauses over positive y2 with all clauses
over ¬y2. All the resolvents are then added to the matrix, and all clauses over
y2 and ¬y2 are dropped. Notice that in the resulting formula, the third clause
subsumes the first clause, so we obtain Φ(z) ≈ ∀x1∀x2∃y1 (¬x1 ∨ x2 ∨¬y1)∧
(z∨y1)∧ (¬z∨¬y1) after simplification. If we continue analogously on ∃y1, we
finally end up with Φ(z)≈ z.

Proposition 2.5.2. Let Φ be a QCNF∗ formula with free variables z and an
existential quantifier ∃y in the innermost quantifier block. Without loss of gener-
ality, Φ = Qφ = Q1v1...Qnvn∃y φ . Let φy := {C |C ∈ φ , y∈C or ¬y∈C} be the
subset of clauses with y or ¬y, and analogously, φ

�y
:= {C | C ∈ φ , y,¬y 6∈C}.

Furthermore, Ry(Φ) :=
{

σ

∣∣∣∃y φy | *
Q-Res σ , σ a clause over z∪{v1, ...,vn}

}
.

Then Φ≈ Q1v1...Qnvn Ry(Φ)∧φ
�y
.

A proof follows immediately from Theorem 7.4.6 in [KBL99] if we apply it on
the subformula ∃y φy and treat z∪{v1, ...,vn} as free variables. Notice that it is
sufficient to resolve only on y and not on the free variables. This can be justified
by the argument that such resolvents could be removed from Ry retroactively by
applying backwards the well-known property that φ ≈ φ ∧σ for any proposi-
tional resolvent σ of a propositional formula φ .

In practice, this technique is problematic due to the rapid formula growth from
having to generate a potentially quadratic number of resolvents. In addition, it
usually leads to a sharp and quick increase in the average clause length of a for-
mula, which is a serious problem for most current QBF∗ solvers. Accordingly,
we will focus in the following on alternative quantifier elimination techniques
that are easier to handle, but we will come back to this approach in Section 5.6
for a discussion on how to integrate it with the other methods.
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2.6. Expressive Power of Quantified Boolean
Formulas

In Section 1.1, QBF∗ formulas have been motivated as a means to provide (po-
tentially) shorter equivalent representations of propositional formulas. For a
given propositional formula φ(z1, ...,zr) over variables z = z1, ...,zr, we can pro-
vide a QBF∗ formula Ψ with free variables z = z1, ...,zr such that both are equiv-
alent in the sense that φ(t(z1), ..., t(zr)) = Ψ(t(z1), ..., t(zr)) for every truth value
assignment t(z) := (t(z1), ..., t(zr)) ∈ {0,1}r to the (free) variables z. Inside of
Ψ, additional quantified variables can be introduced. They are local to Ψ and
are not explicitly considered when checking for equivalence. This is a powerful
advantage of quantified Boolean formulas over propositional formulas, where
equivalence is usually lost when additional variables are introduced.

We have already seen in the introduction that existentially quantified variables
can be used as abbreviations for repeating parts in the original formula:

(A∨¬B∨C∨D)∧ (A∨¬B∨C∨¬E)∧ (A∨¬B∨C∨F)

≈ ∃y (¬y∨A∨¬B∨C)∧ (y∨D)∧ (y∨¬E)∧ (y∨F)

The equivalence is easy to verify by considering all possible resolutions on y as
in the previous section. This technique can be extended to situations where each
subformula in a given set is combined with each of a second set. For example,
let φ1(z), ...,φk(z) and ψ1(z), ...,ψl(z) be disjunctions of literals over variables
in z. Then a Cartesian product of the form

∧
i, j(φi(z)∨ψ j(z)) can be abbreviated

as follows: ∧
i=1,..,k,
j=1,...,l

(φi(z)∨ψ j(z))

≈ ∃y
∧

i=1..k
(¬y∨φi(z))∧

∧
j=1..l

(y∨ψ j(z))

If φi and ψ j are long and/or k and l are large, the resulting quantified formula
is considerably shorter than the propositional version. By applying such ab-
breviations repeatedly within a given formula, even better compression can be
achieved.

We can even handle singular irregularities within such regular structures. For
example, assume that the above combination contains no clauses (φi ∨ψi) (for
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simplicity, we let both i and j range from 1 to k). With the addition of comple-
mentary universal variables, it is possible to block exactly these combinations:

∧
i, j=1..k,

i 6= j

(φi(z)∨ψ j(z))

≈ ∀x1...∀xk∃y
∧

i=1..k
((¬y∨φi(z)∨ xi)∧ (y∨ψi(z)∨¬xi))

The equivalence is again seen by considering all possible resolutions on y. Then
the clauses (¬y∨ φi(z)∨ xi) and (y∨ψi(z)∨¬xi) have complementary univer-
sals. According to the definition of Q-resolution, such clauses cannot be resolved
and are therefore blocked from the set of resolvents. On the other hand, we have
non-complementary universals in the clauses (¬y∨ φi ∨ xi) and (y∨ψ j ∨¬x j)
whenever i 6= j. We can resolve those clauses into (φi ∨ xi ∨ψ j ∨¬x j) and af-
terwards remove the universals through universal reduction, which produces the
original clause (φi∨ψ j).

Another technique that we can use to obtain concise QBF∗ encodings is the elim-
ination of multiple instantiations of (sub-)formulas with different arguments.
Consider the example

ϕ = φ(a1,1, ...,a1,l)∧φ(a2,1, ...,a2,l)∧ ...∧φ(ak,1, ...,ak,l)

where φ(v1, ...,vl) is a propositional formula over v1, ...,vl which is instantiated
multiple times for different arguments ai, j ∈ A. If φ is large and/or the number k
of copies is huge, the formula can be significantly compressed by working only
with one single instantiation of φ over quantified variables and then associating
the ai, j with those quantified variables, as in the BMC encoding by [DHK05]:

ϕ ≈ ∀x1...∀xl

(
k∨

i=1

l∧
j=1

(x j↔ ai, j)

)
→ φ(x1, ...,xl)

When we combine this idea with the previous suggestions for abbreviating re-
peating subformulas, we can also handle subformulas which are repeated with
renamed variables.

With these compression techniques, QBF∗ representations are often much more
compact than propositional formulas. In fact, a well-known result is that there
exist QCNF∗ formulas for which every equivalent propositional CNF formula
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is exponentially longer [KBL99]. This shows that quantification is indeed a
powerful language feature. We assess the expressive power of different classes
of formulas by the following relation:

Definition 2.6.1. (Relations between Formula Classes)
Let C1 and C2 be two classes of propositional or quantified Boolean formulas
with free variables. Then we define C1 ≤poly−length C2 if and only if there is a
polynomial p such that for all formulas Φ ∈ C1, there exists Ψ ∈ C2 with Φ≈Ψ

and |Ψ| ≤ p(|Φ|). That means every Boolean function which can be represented
by a formula in C1 can also be described by an at most polynomially longer
equivalent formula in C2.

If there is a polynomial q such that we can deterministically compute for all
Φ ∈ C1 an equivalent Ψ ∈ C2 in time T (|Φ|)≤ q(|Φ|), we let C1 ≤poly−time C2.

As usual, we let C1 =poly−length C2 if C1 ≤poly−length C2 and C2 ≤poly−length C1.
And we define C1 <poly−length C2 if C1 ≤poly−length C2, but C2 6≤poly−length C1.
Relations =poly−time and <poly−time are defined analogously.

The remark in the previous paragraph implies that CNF <poly−length QCNF∗.
We will refine this relationship in Chapter 3 by considering classes of quantified
Horn formulas, and we will also discuss the role of conjunctive normal form
transformations in this context.

2.7. Boolean Function Models

A suitable concept for describing the satisfying truth assignments to the exis-
tential variables is the notion of models for quantified Boolean formulas, which
has initially been introduced in [KBSZ04]. We also use the term Boolean func-
tion model to distinguish this concept from other kinds of models in different
language domains whenever the distinction is not clear from the context. A
Boolean function model maps each existential variable yi to a Boolean function
fyi over universal variables whose quantifiers precede the quantifier of yi and
over free variables (if they are allowed). The model functions fyi can be given
in different representations: these might be truth tables, propositional formu-
las, or even QBF∗ formulas themselves. In the following, we represent them as
propositional formulas.
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We first consider models for closed formulas and then discuss a suitable exten-
sion to formulas with free variables. In the closed case, a model is called a
satisfiability model if substituting the model functions for the existential vari-
ables leads to a formula which is true. Consider a two-player game represented
by the QBF formula

Φ = ∀x1∃y1...∀xn∃yn G(x1,y1, ...,xn,yn)

where xi is the i-th move of the first player and y j is the j-th move of the sec-
ond player. The moves are binary, and the function G determines for a given
sequence x1,y1, ...,xn,yn of moves which player wins. A model indicates which
moves yi the second player makes depending on the preceding moves x1, ...,xi
of player 1. If we let G = 1 whenever player 2 wins, a satisfiability model
describes a winning strategy for player 2, which means that for any sequence
of opponent moves x1, ...,xi, he can find suitable moves yi such that finally
G(x1,y1, ...,xn,yn) = 1.

Satisfiability models are essential for our work, so we provide a formal definition
(based on [KBSZ04]):

Definition 2.7.1. (Satisfiability Model)
For Φ ∈ QBF with existential variables y = (y1, ...,ym), let M = ( fy1 , ..., fym)
be a mapping which associates with each existential variable yi a propositional
formula fyi over universal variables whose quantifiers precede the quantifier
of yi. Then M is a satisfiability model for Φ if and only if the resulting formula
Φ[y/M] :=Φ[y1/ fy1 , ...,ym/ fym ], where simultaneously each existential variable
yi is replaced by its corresponding formula fyi and the existential quantifiers are
dropped from the prefix, is true.

As introduced in [KBZ05], equivalence models extend the notion of models to
formulas with free variables by allowing that the model functions fyi may also
depend on free variables. Instead of asking that Φ[y/M] must be satisfiable,
equivalence models require that Φ and Φ[y/M] are equivalent. That makes the
concept fit nicely with the main application of providing short equivalent repre-
sentations of propositional formulas.
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Definition 2.7.2. (Equivalence Model)
Let Φ(z) = Qφ(x,y,z) be a QBF∗ formula with prefix Q and matrix φ , universal
variables x = (x1, ...,xn), existential variables y = (y1, ...,ym) and free variables
z = (z1, ...,zr). For propositional formulas fyi over z and over universal vari-
ables whose quantifiers precede ∃yi, we say M = ( fy1 , ..., fym) is an equivalence
model for Φ(z) if and only if Φ(z)≈ ∀x1...∀xn φ(x1, ...,xn,y,z)[y/M].

Models are of particular interest, because they provide a precise characterization
of the behavior of the existentially quantified variables. Knowing (parts of) the
model can be helpful when solving a quantified Boolean formula. For exam-
ple, a solver can use models as a formalism to represent information about the
existentials which it has learned while traversing the search space. A popular
example of this technique is the QBF solver sKizzo [Ben05a], which is based
on successively computing the model functions and storing them compactly as
reduced ordered binary decision diagrams (ROBDDs). In the introduction, we
have already pointed out that there appears to be a close connection between the
structure of formulas and the structure of their models. This is not only helpful
for investigating the expressiveness of particular formula classes. We also want
to use information about the model structure to simplify formulas. The follow-
ing chapter shows how the Horn property affects satisfiability and equivalence
models.

26



3. Quantified Horn Formulas:
Models and Transformations

In this chapter, quantified Horn formulas are investigated. We prove that the be-
havior of the existential quantifiers depends only on the cases where at most one
of the universally quantified variables is zero. Accordingly, we give a detailed
characterization of QHORN satisfiability models which describe the set of sat-
isfying truth assignments to the existential variables. The result is extended to
quantified Horn formulas with free variables (QHORN∗) by showing that they
have monotone equivalence models.

The main application of these findings is that the general method of universal ex-
pansion can be refined such that arbitrary quantified Horn formulas can always
be rewritten into short existentially quantified Horn formulas. We prove: a quan-
tified Horn formula Φ of length |Φ| with free variables, |∀| universal quantifiers
and an arbitrary number of existentials can be transformed in time O(|∀| · |Φ|)
into an equivalent Horn formula of length O(|∀| · |Φ|) which has only existential
quantifiers.

We obtain a new algorithm for solving the satisfiability problem for quantified
Horn formulas with or without free variables in time O(|∀| · |Φ|) by transforming
the input into a satisfiability-equivalent propositional formula. In addition, it is
shown that QHORN satisfiability models can be found with the same complexity.

Our main results can also be generalized to quantified Horn formulas with the
extension of allowing an arbitrary number of positive free literals per clause
(QHORNb). It follows that QHORNb satisfiability is NP-complete. Interesting
applications that we discuss are the Tseitin CNF transformation and the encoding
of Boolean circuits over {∧,∨,¬}. We present propositionally-labeled series-
parallel graphs, a class of directed acyclic multigraphs which can be encoded
as ∃2-HORNb ⊆ QHORNb formulas. That leads to a novel structure-preserving
transformation of propositional formulas into satisfiability-equivalent 3-CNF of
linear length.
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We also consider random QHORN formulas and present a suitable generation
model which avoids trivial unsatisfiability revealed in existing approaches. Ex-
periments illustrate typical sat-unsat-transition behavior and rather simple satis-
fiability models with characteristic distribution patterns.

This chapter extends preliminary results which have been published in [BKBZ05,
BKB08, KBZB09]. The main results have also been pointed out in [KBB09].
Sections 3.8.2 and 3.8.3 on graph encodings and CNF transformation are a re-
finement of initial results from [BKB09].

3.1. Motivation

We want to begin our investigations on the expressiveness of quantifiers by con-
sidering quantified Horn formulas. This subclass is an ideal research object,
because it appears to be much easier than arbitrary QCNF∗, while at the same
time being sufficiently powerful for some interesting applications.

The class of quantified Horn formulas (QHORN or QHORN∗ if free variables are
allowed) contains all quantified Boolean formulas in CNF whose clauses have at
most one positive literal. As mentioned in Section 2.3, this is one of the tractable
QBF∗ subclasses. QHORN∗-SAT is known to be decidable in time O(|∀| · |Φ|)
for formulas of length |Φ| and with |∀| universal quantifiers [FKKB95].

Horn clauses such as C = y0 ∨¬y1 ∨ ...∨¬yl can be thought of as implications
(y1∧ ...∧ yl)→ y0 where the premise is a conjunction of positive literals and the
conclusion is (at most) one positive literal. Being able to represent this simple
version of the “if-then” statement in a tractable subclass of QBF∗ is part of
the importance of the class QHORN∗.

Another important point is that QHORN∗ formulas may occur as subproblems
when solving arbitrary QCNF∗ formulas. In fact, it has been shown [CMLBL05]
that it can actually be rewarding for DPLL-style backtracking solvers to apply
the splitting rule in such a way that Horn (or Horn-renamable) branches are
reached as quickly as possible.

There is also an interesting relationship between quantified Horn formulas and
the Tseitin procedure [Tse70], which is used to transform arbitrary propositional
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formulas in NNF into short satisfiability-equivalent CNF formulas by introduc-
ing abbreviations for misplaced conjunctions. The quantified version of the algo-
rithm produces existentially quantified QCNF∗ formulas where the free variables
are the original variables of the propositional input formula, and the existential
variables are helper variables that introduce abbreviations. It can be shown that
the existential variables alone constitute a Horn formula. This motivates us to
consider a generalization of QHORN∗ in which the Horn property is only en-
forced on the quantified variables, allowing an arbitrary number of free literals
with arbitrary polarity in each clause.

Definition 3.1.1. (Generalized Quantified Horn Formulas QHORNb)
With QHORNb, we denote the class of formulas of the form

Φ(z1, ...,zr) = Q1v1...Qkvk φ(v1, ...,vk,z1, ...,zr) ∈ QCNF∗

such that φ ∈ HORN after removing all literals over free variables.

With this powerful extension, we can no longer expect tractability, since this
class obviously includes propositional CNF. But we will see in Section 3.8
that some positive properties of ordinary QHORN∗ formulas remain the same
for QHORNb. We will also present further applications, such as encodings of
graphs or Boolean circuits.

3.2. Research Goals and Related Work

The goal of this chapter is to investigate whether we can simplify arbitrary
QHORN∗ formulas by dropping or substituting quantified variables. This is
linked to the fundamental question if the syntactic restriction of having at most
one positive literal per clause affects the semantics of those formulas in such
a way that we can transform them into simplified equivalent formulas. It is
known that there exist QHORN∗ formulas for which every equivalent proposi-
tional Horn or even arbitrary CNF formula is exponentially longer [KBL99],
which means CNF <poly−length QHORN∗. This marks the limit of simplifying
QHORN∗ formulas and shows that these formulas are actually more complex
than their tractability might suggest.

Is it possible to avoid the exponential growth from transforming a quantified for-
mula into a purely propositional Horn formula by eliminating just one kind of
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quantifier? In [KBL99], the impossibility of a polynomial-size transformation
from QHORN∗ to HORN is proven by considering a counterexample which is
only an existentially quantified Horn formula. That means we know that ex-
istential quantifiers can cause exponential blowup, but what about the universal
ones? In the introduction, we have already assumed that in QCNF∗ formulas, the
universal quantifiers are slightly less powerful, but their elimination is clearly ex-
ponential in general. It is known that Q2-CNF∗ formulas are equivalent to exis-
tentially quantified 2-CNF formulas of linear length [KBL99], but Q2-CNF∗ ap-
pears to be a simpler class of formulas than QHORN∗, not to mention QHORNb.
In particular, a forall-reduced Q2-CNF∗ formula may only contain at most one
universal literal per clause, and only in combination with an existential literal
which depends on that universal. The Horn property, on the other hand, al-
lows multiple universals per clause, and also in combination with existentials
that do not depend on them. Can we nevertheless transform a QHORN∗ or even
QHORNb formula with arbitrary alternations of existential and universal quanti-
fiers into a purely existentially quantified formula of polynomial length?

For second-order Horn logic, [Grä92] has shown that in a formula of the form
∀P∃Q1...∃Qr∀z φ , where φ is a conjunction of Horn clauses, it is sufficient
to consider only predicates P which are false in at most one point. This al-
lows expanding the universal quantifier by considering one instance of the for-
mula for the predicate being always true and one for the predicate being false
in exactly one point. That is similar to the well-known universal expansion in
QBF∗ [AB02, Bie05], where ∀x φ(x) ≈ φ(0)∧ φ(1) as mentioned in the in-
troductory chapter. For formulas with multiple existential quantifiers, [Grä92]
suggests repeated expansion of the innermost universal quantifier, but that may
obviously lead to exponential formula growth. Similarly, existing QBF∗ appli-
cations [AB02, Bie05] are also exponential in nature.

Our idea is to extend the observation made in [Grä92] to multiple quantifiers by
considering not only one single universal quantifier in isolation, but to expand
all of them at the same time. Then we show that only those cases are relevant in
which at most one of the universally quantified variables is false. Please notice
the subtle, but very significant, difference between this statement and the one
made by Grädel about one single universally quantified predicate being false in
at most one point. For the easy special case of quantified Horn formulas with
∀∗∃∗ (= Π2) prefix, that means without complicated quantifier dependencies,
the property that we suggest has already been shown in [KKBS87], but without
making the important connection to quantifier expansion.
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Overall, we extend the existing results with three main contributions:

1. We prove that our observations apply to QHORN∗ formulas with arbitrary
prefix. And while [KKBS87] has been based on Q-resolution, a powerful
but rather indirect approach, we will trace the property back to basic re-
sults on propositional Horn formulas. This will later allow us to generalize
our results even further:

a) to the powerful class QHORNb which allows an arbitrary number of
free literals with arbitrary polarity in each clause (see Section 3.8).

b) to Horn formulas with partially ordered quantifiers (see Section 4.7).

2. Our second main contribution is that we do not only investigate the sat-
isfiability decision problem and the connection to the universal variables,
but we also provide a thorough characterization of the satisfying truth as-
signments that are being made to the existential variables.

3. The most important contribution is that we link these results to the well-
known universal quantifier expansion algorithm that was introduced in
Section 1.2. Unlike existing transformations [Grä92, AB02, Bie05] which
are exponential in the worst case, we show that universal expansion can
be restricted for QHORN∗ to remain quadratic in size and time. This al-
lows us to efficiently transform such formulas into short equivalent purely
existentially quantified Horn formulas.

For our investigations, we need a way to characterize the behavior of the quanti-
fied variables. In Section 2.7, Boolean function models have been introduced as
a suitable tool for describing the satisfying truth assignments to the existential
variables depending on the values of the universals (and the free variables, if the
formula is not closed). We are in particular interested in making a connection
between properties of the model structure and possible formula simplifications.
But as motivated in Section 2.7, Boolean function models are also an important
topic of their own, so we keep the following discussion on models more general.

The interest in models for quantified Boolean formulas has also sparked some
previous work on models for quantified Horn formulas. In [KBSZ04], it has been
shown that QHORN formulas without free variables have satisfiability models
consisting of K2 functions, which have the form fy(x1, ...,xn) =

∧
i∈I xi (or the

constants fy = 0 resp. fy = 1). Moreover, [CD05] has made the unproven obser-
vation that such K2 model functions can be further decomposed into individual
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strategies where all but one universals are fixed. We present and prove a more
general result that also applies to the most interesting case of formulas with
free variables by making the connection to universal expansion. In addition, we
make the important refinement that we can also specify explicitly the individual
strategies that form a model function, which allows us to remove redundancy and
combine everything into concise closed-form model functions given as proposi-
tional formulas. That enables us to prove a detailed characterization of QHORN
satisfiability models which encompasses the previous results on K2 models as
direct consequences.

Our precise description of the models makes it possible to compute them sur-
prisingly efficiently and answers the open question raised in [KBSZ04] whether
QHORN satisfiability models could be computed with the same complexity as
the best known satisfiability algorithms for QHORN.

Another open problem on models for quantified Horn formulas has been identi-
fied in [KBZ05]: how can we generalize the results on satisfiability models for
closed QHORN formulas to equivalence models for QHORN∗ formulas with free
variables? As explained in Section 2.7, equivalence models must lead to a tau-
tology for each satisfying assignment to the free variables. That appears to be a
more challenging requirement which subsequently calls for more complex mod-
els. In fact, we can show that K2 functions are not even sufficient as equivalence
models for the restricted class of purely existentially quantified Horn formulas.
So, do we need to go from model functions with conjunctions of positive vari-
ables all the way to arbitrary propositional formulas? Fortunately, this is not the
case. We prove that negation is still not needed, and monotone functions with
conjunctions and disjunctions of positive universals and free variables are pow-
erful enough to express equivalence models for arbitrary QHORN∗ formulas.

We want to complement our theoretical results with empiric investigations of
particular formula instances. For this purpose, we have identified random for-
mulas to be a suitable research object, because it is easy to create large sets of
instances with desired parameters. Furthermore, appropriate generation models
for random formulas are an interesting topic on their own, and apparently no
previous work on random quantified Horn formulas has been undertaken.
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3.3. Satisfiability Models for QHORN Formulas

We begin our investigations with examining the behavior of the quantified vari-
ables using Boolean function models. In this section and in 3.4, we consider
closed QHORN formulas. Section 3.5 will then discuss how our observations
can be extended to QHORN∗ formulas with free variables.

3.3.1. Partial Satisfiability Models

As motivated before, the number of zeros assigned to the universals appears to
be an important criterion for our investigations, so we first introduce some useful
notation.

Definition 3.3.1. By Bi
n, we denote the bit vector of length n where only the i-th

element is zero, i.e. Bi
n := (b1, ...,bn) with bi = 0 and b j = 1 for j 6= i.

Moreover, we define the following relations on n-tuples of truth values:

1. Z≤1(n) =
⋃
i

{
Bi

n
}
∪ {(1, ...,1)} (at most one zero)

2. Z=1(n) =
⋃
i

{
Bi

n
}

(exactly one zero)

3. Z≥1(n) = {(a1, ...,an) |∃i : ai = 0} (at least one zero)

For example, if n = 3, we have the following relations:

Z≤1(3) = {(0,1,1),(1,0,1),(1,1,0),(1,1,1)}
Z=1(3) = {(0,1,1),(1,0,1),(1,1,0)}
Z≥1(3) = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0)}

We omit the parameter n and simply write Z≤1 (or Z=1 resp. Z≥1) when it is clear
from the context. Usually, n equals the total number of the universal quantifiers
in a given formula.

Our goal is to show that for quantified Horn formulas, we do not need to con-
sider all possible truth assignments to the universal variables. We restrict those
assignments according to a relation R∀(n) ⊆ {0,1}n on the set of possible truth
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assignments to n universals. We first introduce the concept for QBF formulas in
general. Then we apply it to QHORN formulas, in which case R∀ will restrict
the number of zeros using the relations given in the previous definition.

Let Φ = Qφ(x,y) ∈ QBF. The definition of a satisfiability model in Section 2.7
requires that substituting the existentials y in Φ produces a formula Φ[y/M]
which is true. That means the matrix φ [y/M] must be true for all possible as-
signments to the universals x. We now introduce a special kind of satisfiability
model which weakens this condition: a so-called R∀-partial satisfiability model
is only required to satisfy φ [y/M] for certain truth assignments to the universal
variables which are given by a relation R∀.

Definition 3.3.2. (R∀-partial Satisfiability Model)
For Φ = Qφ(x,y)∈QBF with universal variables x = (x1, ...,xn) and existential
variables y = (y1, ...,ym), let M = ( fy1 , ..., fym) be a mapping which associates
with each existential variable yi a propositional formula fyi over universal vari-
ables whose quantifiers precede the quantifier of yi. Furthermore, let R∀(n) be
a relation on the set of possible truth assignments to the n universals. Then M
is a R∀-partial satisfiability model for Φ if the formula φ [y/M] is true for all
x ∈ R∀(n).

For the sake of completeness, we also allow n = 0 (i.e. formulas without univer-
sal variables) in the above definition, in which case the fyi are constants 0 or 1,
and we require that φ [y/M] is true.

Consider the following example: the formula Φ = ∀x1∀x2∃y(x1∨ y)∧ (x2∨¬y)
does not have a satisfiability model, but M = ( fy) with fy(x1,x2) = ¬x1 ∨ x2 is
a Z≤1-partial satisfiability model for Φ because of φ [y/M] = (x1 ∨¬x1 ∨ x2)∧
(x2∨ (x1∧¬x2))≈ x2∨ x1, which is true for all x = (x1,x2) with x ∈ Z≤1.

3.3.2. The Core of QHORN Satisfiability Models

It is not surprising that the mere existence of a Z≤1-partial satisfiability model
does not imply the existence of a (total) satisfiability model - at least not in the
general case. Interestingly, this implication is indeed true for quantified Horn
formulas. We now show: if we can find a Z≤1-partial satisfiability model M
to satisfy a quantified Horn formula whenever at most one of the universals is
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false, then we can also satisfy the formula for arbitrary truth assignments to the
universals.

Even better, we can precisely characterize the satisfying truth assignment to the
existential variables for arbitrary values of the universals by deriving it from the
behavior of the existentials whenever at most one universal is false. The partial
model M is the relevant core which contains all information that is needed to
construct a total satisfiability model Mt . The following definition provides the
details of that construction.

Definition 3.3.3. (Total Completion of Partial Models)
Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula with universal vari-
ables x = (x1, ...,xn) and existentials y = (y1, ...,ym), and let M = ( fy1 , .., fym) be
a Z≤1-partial satisfiability model for Φ. For each fyi(x1, ...,xni) in M, we define
f t
yi

as follows:

f t
yi
(x1, ...,xni) := (x1 ∨ fyi(0,1,1, ...,1))

∧ (x2 ∨ fyi(1,0,1, ...,1))
∧ ...

∧ (xni ∨ fyi(1,1, ...,1,0))
∧ fyi(1, ...,1)

Then we call Mt = ( f t
y1
, ..., f t

ym) the total completion of M.

Please notice that the previous definition is equivalent to the following:

f t
yi
(x1, ...,xni) = (¬x1 → fyi(0,1,1, ...,1))

∧ (¬x2 → fyi(1,0,1, ...,1))
∧ ...

∧ (¬xni → fyi(1,1, ...,1,0))
∧ fyi(1, ...,1)

This means that when some of the arguments are zero, we consider all cases
where at most one of those arguments is zero and take the conjunction of the cor-
responding original function values. For example, f t

y(1,0,0,1) = fy(1,0,1,1)∧
fy(1,1,0,1)∧ fy(1,1,1,1). In case all the arguments are 1, we simply return the
value of the original function, i.e. f t

y(1, ..,1) = fy(1, ..,1). These observations
lead to the following lemma.
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Lemma 3.3.4. Let t(x) = (t(x1), ..., t(xn)) ∈ Z≥1(n), t(xz1) = 0, ..., t(xzk) = 0
and t(xs) = 1 for s 6= z1, ...,zk, be a truth assignment to the universal variables
where k ≥ 1 universals xz1 , ...,xzk are zero. Then the definition of f t

yi
implies

f t
yi
(t(x1), ..., t(xni)) =

∧
1≤ j≤k

fyi(tz j(x1), ..., tz j(xni))∧ fyi(1, ...,1)

where tz j(x) = (tz j(x1), ..., tz j(xn)) = B
z j
n is a truth assignment where exactly one

universal xz j is zero.

Moreover, total completion equals the partial model when all universals on
which yi depends are 1:

f t
yi
(1, ...,1) = fyi(1, ...,1)

This definition is based on an observation: it is a well-known fact about propo-
sitional Horn formulas, proved by Alfred Horn himself [Hor51], that the inter-
section of two satisfying truth assignments is a satisfying truth assignment, too.
Let t1(x) = (t1(x1), ..., t1(xn)) ∈ {0,1}n and t2(x) = (t2(x1), ..., t2(xn)) ∈ {0,1}n

be two truth assignments over variables x1, ...,xn, then the intersection of t1 and
t2 is defined as

t1(x)∩ t2(x) = (t1(x1)∧ t2(x1), ..., t1(xn)∧ t2(xn)) .

Our idea is to establish a similar relationship between the satisfying truth as-
signments to the existential variables in a quantified Horn formula, taking also
into consideration the universally quantified variables. Assume that a QHORN
formula with two universal variables xi and x j is known to be satisfiable when
xi = 0 and x j = 1 or when xi = 1 and x j = 0. That means there exist two truth
assignments t1 and t2 to the existential variables such that the formula is satisfied
in both cases. If we lift the closure under intersection to the quantified case, it
means that the intersection of t1 and t2 satisfies the formula when both xi and x j
are zero.

An important point to consider is that we have to obey the quantifier dependen-
cies when choosing truth values for the existential variables. Assume the pre-
vious example includes an existential variable yk with t1(yk) = 1 and t2(yk) = 0
and the additional restriction that ∃yk occurs earlier in the prefix than ∀x j. Then
yk does not depend on x j, but the intersection of t1 and t2 would assign yk the
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3.3. Satisfiability Models for QHORN Formulas

value 0 when xi = 0 and x j = 0, which is not allowed, because we have already
set yk to 1 when xi = 0 (but x j = 1). This shows that intersecting arbitrary sat-
isfying truth assignments is not appropriate for QHORN formulas. However,
the proof of Theorem 3.3.5 guarantees by construction that quantifier depen-
dencies are respected. Another point to notice is that we always intersect with
fyi(1, ...,1). This makes sure that we reduce f t

yi
to a well-defined value from the

partial satisfiability model in cases where all zeros are assigned to universals on
which yi does not depend.

Theorem 3.3.5. Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula
which has a Z≤1-partial satisfiability model M = ( fy1 , .., fym). Then its total
completion Mt = ( f t

y1
, ..., f t

ym) as defined above is a satisfiability model for Φ.

Proof:
We must show that φ [y/Mt ] is true for all truth assignments to the universal
variables. Since f t

yi
(1, ...,1) = fyi(1, ...,1), we only need to consider truth as-

signments where at least one universal is zero.

Let t(x) = (t(x1), ..., t(xn)) ∈ Z≥1(n) with t(xz1) = 0, ..., t(xzk) = 0 and t(xs) = 1
for s 6= z1, ...,zk be a truth assignment to the universal variables where k ≥ 1
universals xz1 , ..., xzk are zero. When we combine the truth assignment to the
universals and the corresponding values of the model functions into a (n+m)-
tuple of truth values, we obtain the following bit vector:

τ = (t(x1), ..., t(xn), f t
y1
(t(x1), ..., t(xn1)), ..., f t

ym(t(x1), ..., t(xnm)))

Our goal is to prove that the propositional matrix φ is true under the truth value
assignment τ = (τ(x1), ...,τ(xn),τ(y1), ...,τ(ym)). We can write the tuple t(x)
with k universals being zero as an intersection t(x) = tz1(x)∩ ...∩ tzk(x) of k
assignments tz j(x) = B

z j
n with exactly one zero each. Similar to the definition

of f t
yi

, it is useful to intersect with (1, ..,1) as well. With this trick, we have
t(x) = tz1(x)∩ ...∩ tzk(x)∩ (1, ...,1) and can decompose τ as follows:

τ = (tz1(x), f t
y1
(t(x1..n1)), ..., f t

ym(t(x1..nm)))

∩ ·· ·
∩ (tzk(x), f t

y1
(t(x1..n1), ..., f t

ym(t(x1..nm)))

∩ (1, ...,1, f t
y1
(t(x1..n1), ..., f t

ym(t(x1..nm)))

For clarity, we abbreviate t(x1..ni) := (t(x1), ..., t(xni)) and f (1) := f (1, ...,1).
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Now, Lemma 3.3.4 allows us to decompose this even further:

τ =

(
tz1(x),

∧
j=1..k

fy1(tz j (x1..n1))∧ fy1(1), ...,
∧

j=1..k
fym(tz j (x1..nm))∧ fym(1)

)

∩ ·· ·

∩

(
tzk (x),

∧
j=1..k

fy1(tz j (x1..n1))∧ fy1(1), ...,
∧

j=1..k
fym(tz j (x1..nm))∧ fym(1)

)

∩

(
1, ...,1,

∧
j=1..k

fy1(tz j (x1..n1))∧ fy1(1), ...,
∧

j=1..k
fym(tz j (x1..nm))∧ fym(1)

)

This can be simplified by distributing the conjunctions over the intersections:

τ = (tz1(x), fy1(tz1(x1..n1)), ..., fym(tz1(x1..nm)))

∩ ·· ·
∩

(
tzk(x), fy1(tzk(x1..n1), ..., fym(tzk(x1..nm))

)
∩ (1, ...,1, fy1(1), ..., fym(1))

We have thus split τ = (τ(x1), ...,τ(xn),τ(y1), ...,τ(ym)) into an intersection
τ = τ1 ∩ ...∩ τk ∩ τ0 of k+ 1 individual truth assignments to the universal and
existential variables in φ . A close look reveals that each τi represents a situation
where at most one universal is zero and each existential yi is chosen as deter-
mined by fyi for that constellation of the universals. Under the assumption that
M = ( fy1 , .., fym) is a Z≤1-partial satisfiability model of Φ, we know that φ is true
under each of those assignments τ0, ...,τk. Since φ is a propositional Horn for-
mula, the intersection of satisfying truth assignments is again a satisfying truth
assignment.

By construction, quantifier dependencies are respected, i.e. an existential can-
not obtain a different value when only a universal on which it does not depend
changes. To see this, we write τ as τ = (τ1∩ τ0)∩ (τ2∩ τ0)∩ ...∩ (τk ∩ τ0). In-
tersecting τi with τ0 assigns the existentials as determined by Mt when exactly
one universal is zero. And in the outer intersections (τi ∩ τ0)∩ (τ j ∩ τ0), the
truth value of an existential can only change if one of the universals on which
it depends changes value as well. That is guaranteed, because the arguments of
fy1 , ..., fym contain only those universals on which the corresponding existentials
depend.
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3.3. Satisfiability Models for QHORN Formulas

Using Definition 3.3.3 and Theorem 3.3.5, we can immediately obtain a (total)
satisfiability model upon finding a Z≤1-partial satisfiability model for a quanti-
fied Horn formula. This means that the behavior of the existential quantifiers is
completely determined by the cases where at most one of the universal variables
is false. The cases where more than one of them is assigned false are not relevant
for predicting the behavior of the existentials.

3.3.3. Model Structure

An immediate consequence of our results on partial satisfiability models is the
fact that QHORN formulas have models consisting of functions of the form
fy(x1, ...,xn) =

∧
i∈I xi (or the constants fy = 0 resp. fy = 1). In accordance

with [KBSZ04], the formal definition of this class of models is given below.

Definition 3.3.6. (K2 Satisfiability Model)
With K2, we denote the following class of Boolean functions:

K2 := { f | ∃I ⊆ {1, ...,n} : f (x1, ...,xn) =
∧
i∈I

xi,n≥ 1}∪{ f | f = 0 or f = 1}

Let M = ( fy1 , ..., fym) be a satisfiability model for a formula Φ ∈ QBF. Then we
call M a K2 satisfiability model for Φ if the model functions fyi are in K2 for
every 1≤ i≤ m.

Theorem 3.3.7. Any satisfiable formula Φ ∈ QHORN has a K2 satisfiability
model. It can be obtained from a Z≤1-partial satisfiability model through total
completion.

Proof:
If Φ is satisfiable, it has a Z≤1-partial satisfiability model M = ( fy1 , ..., fym).
According to Definition 3.3.3 and Theorem 3.3.5, its total completion Mt is a
(total) satisfiability model and is composed of functions given by

f t
yi
(x1, ...,xni) := (x1 ∨ fyi(0,1,1, ...,1))

∧ (x2 ∨ fyi(1,0,1, ...,1))
∧ ...

∧ (xni ∨ fyi(1,1, ...,1,0))
∧ fyi(1, ...,1)
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Notice that fyi(0,1,1, ...,1), fyi(1,0,1, ...,1), ..., fyi(1, ...,1) are merely Boolean
constants in the definition of f t

yi
.

That means we actually have functions of the form

f t
yi
(x1, ...,xni) := (x1 ∨ c1)

∧ (x2 ∨ c2)

∧ ...

∧ (xni ∨ cni)

∧ cni+1

with c j = 0 or c j = 1. Clearly, those functions are in K2.

In [KBSZ04], it has already been shown that quantified Horn formulas have
K2 models. However, that proof was significantly longer and required more
advanced techniques (Q-pos-unit-resolution). Most importantly, however, it did
not lead to an efficient algorithm for finding those K2 models. As mentioned
earlier, it has since been an open question whether it would be possible to find
K2 satisfiability models in time at most O(|∀| · |Φ|), the complexity of the best
known QHORN-SAT decision algorithms. In Section 3.7.2, we will develop
such an O(|∀| · |Φ|) algorithm on the basis of total completion. By virtue of the
previous theorem, it produces K2 models.

An interesting observation in the proof above is that cni+1 = fyi(1, ...,1) = 0 im-
plies f t

yi
(x1, ...,xni) = 0. This means that existential variables which are assigned

the value 0 when all universals are 1 can keep this satisfying assignment for any
other combination of values that the universals may have. It is therefore typical
for QHORN satisfiability models that they contain a large fraction of constant
model functions fyi = 0. We have also verified this experimentally for random
QHORN formulas in the next section.

3.4. Random QHORN Formulas

Now that we have characterized in detail the structure of QHORN satisfiability
models, an interesting question is how the individual model functions for given
instances are distributed within K2: how many conjunctions do they typically
have, and how many of them are just Boolean constants? Such model distribu-
tions are of general interest to QBF solving, because they are indicators of how
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complex the search space is, how strong the dependencies between the variables
are, etc. Since those factors have a direct impact on the performance of solvers,
they are helpful for assessing the hardness of QBF formulas. In this section, we
are going to investigate model distributions for random quantified Horn formu-
las and demonstrate that they possess a characteristic and very simple pattern,
which we can explain with our previous results on the model structure.

At first, however, we need a suitable method for generating random QHORN
instances. Besides our interest in satisfiability models, we will give a detailed
coverage of random QHORN formulas in general. Random formulas and their
generation have attracted a considerable amount of previous work, because inter-
esting phase transitions depending on generation parameters have been observed
for various classes of propositional or QBF formulas. While propositional Horn
formulas have been considered before (e.g. in [DBC01, Ist02]), we are not aware
of existing results on QHORN.

In literature, procedures for generating random formulas are usually called (gen-
eration) models. In order to avoid confusion between satisfiability models and
generation models, we will avoid using the term “model” without further distinc-
tion, even if it deviates from common names. For example, we will say “FCL2
generation model” throughout this section instead of the commonly used name
“FCL2 model”.

3.4.1. Random Formula Generation

As described in [CGS97], random QCNF formulas are typically generated ac-
cording to a fixed clause length generation model with a given number k of
quantifier blocks, all having the same cardinality n. In order to produce a spec-
ified number q of clauses with fixed size h, randomly choose for each clause
h distinct variables from the whole prefix and negate each one with probability
0.5. Discard duplicate clauses and purely universal clauses.

Gent and Walsh have identified in [GW99] a problem with this method, the
so-called unit flaw: for a given clause size h, a formula is likely to contain com-
plementary ∃-unit clauses when q = Ω(

√
n) due to the birthday paradox (about√

365 people are necessary to have a 50% chance of matching birthdays). For
n→∞, two such complementary clauses C1 = yi

∨
l∈L1

xεl
l and C2 =¬yi

∨
l∈L2

xεl
l

almost certainly have distinct universals, i.e. L1 ∩ L2 = /0. These clauses can
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3. Quantified Horn Formulas: Models and Transformations

therefore always be resolved to the empty clause, since there is no blocking by
complementary universals. That makes the formula trivially unsatisfiable.

Several modified generation models have been suggested to avoid the unit flaw.
While the solutions in [GW99] and [CI05] vary in detail, they have in common
that they no longer allow clauses with less than two existential variables. For
QHORN formulas, however, such generation models are unsuitable, because re-
quiring at least two existentials per clause means that each clause has at least
one negative existential, which makes the formula trivially satisfiable when all
existentials are false.

Another suggestion to make the original method unit-flawless was made by
Cadoli et al. in [CSGG02]. In their FCL2 generation model, an ∃-unit clause
is only removed and replaced with a new clause if the formula already contains
a complementary ∃-unit clause with non-blocking universals. That is, the two
clauses have no complementary universals at all, or all of them can be forall-
reduced, because their quantifiers come after the quantifier of the existential unit
variable. For example, assume that the prefix is ∃y1∀x1∃y2∀x2∃y3 and that the
clauses C1 = (y2∨¬x1∨¬x2) and C2 = (¬y3∨x2) have already been generated.
Then we would discard an additional clause (¬y2 ∨¬x1 ∨ x2), because x2 and
¬x2 can be forall-reduced, and the clause resolves with C1 to the empty clause.
On the other hand, a clause (y3∨¬x1∨¬x2) would be allowed, because it cannot
be resolved with C2 due to blocking universals x2,¬x2.

Since this approach also works for Horn formulas, we have adopted it for our ex-
periments. Based on the previous discussion, we obtain the following procedure
for generating random QHORN formulas:

1. we build a prefix with k quantifier blocks, each having n quantifiers. The
innermost block is always existential.

2. we produce q clauses of uniform size h. For each clause, distinct variables
are chosen randomly from the whole prefix. Each one is negated with
probability 0.5.

3. a clause is discarded and replaced with a new one whenever one of the
following is true:

• if the clause is not a Horn clause

• if it is purely universal
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3.4. Random QHORN Formulas

• if a duplicate clause has already been generated

• if the clause is ∃-unit and the formula already contains a comple-
mentary ∃-unit clause with non-blocking universals.

Notice that in this generation model, most clauses are going to be definite, since
the probability of all literals in a clause being negative is only 0.5h. This matches
some existing studies on propositional Horn formulas, e.g. [DBC01, Ist02].

3.4.2. Phase Transition Behavior

A typical phenomenon for various classes of random satisfiability problems
is a phase transition from mostly satisfiable to mostly unsatisfiable problems
induced by small changes of the #clauses/#variables ratio. Around a ratio
where the probability of a formula being satisfiable is about 50%, this proba-
bility changes significantly (even abruptly in case of a sharp transition) when
the #clauses/#variables ratio is varied slightly. Experience has shown that for-
mulas near this transition are usually more challenging to solve and therefore
more suitable for experiments. Further away from the phase transition, formulas
usually exhibit simpler reasons for (un)satisfiability.

We have examined this phase transition behavior for the quantified Horn for-
mulas generated with the above model, which we have implemented within our
logic framework ProverBox (see Section 5.7.1). In our experiments, formulas
with ∀∃ prefix and various clause sizes were considered. For different numbers
of variables, we have varied the #clauses/#variables ratio and determined the
fraction of unsatisfiable problems. The results are shown in Figures 3.1 and 3.2
for clause sizes h = 5 and h = 8.

As expected, we can observe the typical phase transition patterns. However, it
appears that the location of the transition depends on two factors: the clause size
h and the number of variables n. We can explain both phenomenons.

We start with the influence of the clause size, which is easy to understand: For
clause size h= 8, the phase transition is shifted towards larger q/n ratios in com-
parison to h = 5. The reason is that when the number of clauses and variables is
the same, constraints with larger clauses are easier to satisfy. We have also per-
formed experiments with smaller clause sizes like the usual 3-CNF, but in those
cases, the transition is so far to the left that the problems are becoming trivially
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Figure 3.1.: Fraction of unsatisfiable problems for random ∀∃HORN formulas
with clause size h = 5
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Figure 3.2.: Fraction of unsatisfiable problems for random ∀∃HORN formulas
with clause size h = 8
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solvable with standard simplification techniques like pure literal detection.
Even for h = 5, this effect has been evident. The reason is that q Horn clauses
have at most q positive literals, but we have 2n variables. So unless the ratio
q/n is significantly greater than 2, we are likely to have some variables which
occur only negatively. Removing those usually produces new pure literals, and
the formula ultimately collapses.

More surprising is the observation that for a fixed clause size, the phase transi-
tion appears to occur earlier for larger n. Interestingly, this is not the case for
propositional satisfiability, where the transition appears to occur at a constant
q/n ratio [CA93]. On the other hand, the FCL2 generation model by Cadoli et
al. [CSGG02] also shows this shift. Since our generation model is based on
FCL2, it is not unexpected that our experiments show this behavior as well. Un-
fortunately, previous literature on FCL2 does not give a reason for this effect.
Our explanation is that this behavior is similar to the unit flaw mentioned above,
it is just postponed one step: we now have trivial unsatisfiability after two steps
of Q-unit resolution. To prove this phenomenon, we need to have a look at the
number of ∃-unit clauses in formulas produced by the FCL2 generation model.

Lemma 3.4.1. For fixed clause size h and fixed ratio q
n , the FCL2 generation

model produces formulas with Θ(n) = Θ(q) ∃-unit clauses.

Proof:
For the original fixed clause length generation model in which complementary
∃-unit clauses are kept, it is easy to see that the probability of a clause being
∃-unit is asymptotically constant: if we draw h variables out of n existentials
and n universals without replacement, Pr [only 1st variable is existential]→ 1

2h

for n→ ∞. It follows that Pr [exactly one of h variables is existential]→ h
2h for

n→ ∞.1

For the FCL2 generation model, it is also necessary to show that we do not have
less than Θ(n) ∃-unit clauses due to the discarding of complementary pairs. Let
u = p ·n be the number of ∃-unit clauses without discarding, where p is asymp-
totically constant. For any such clause, the probability that it is complementary
to another one is u

2n = p
2 , because that is the probability that a particular ∃-unit

1If n is not significantly larger than h, we have to consider the effect that after drawing some
universal variables, there are more existentials than there are universal variables left. But since
this imbalance is bounded by the constant h, it can be neglected as n→ ∞.
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literal out of the 2n possible ones occurs in one of the u ∃-unit clauses. Then
the expected number of ∃-unit clauses for which there exists a complementary
∃-unit clause is p

2 ·u = p2

2 ·n. In the FCL2 generation model, less than this num-
ber of clauses is discarded (only one of a pair of complementary clauses, and
only if they do not have blocking universals). Thus, the expected number of
∃-unit clauses in the FCL2 model is at least p ·n− p2

2 ·n, which is still Θ(n).

We are now able to show that FCL2 produces formulas which can almost cer-
tainly be refuted after two steps of Q-unit resolution if n is sufficiently large.

Theorem 3.4.2. For fixed clause size h and fixed ratio q
n , the FCL2 generation

model will produce formulas φ with

Pr
[
φ | 2

Q-unit res t
]
→ 1

for n→ ∞.

Proof:
According to the previous lemma, we expect FCL2 to generate p1 · n ∃-unit
clauses, where p1 is asymptotically constant. Analogously, we expect p2 · n
clauses with exactly two existentials (we call them ∃-2 clauses). We know that
there are only 2n different unit clauses, and there are also only 2n different possi-
bilities for the first existential literal in the ∃-2 clauses. With probability 1− 1

2n ,
the first ∃-unit literal is not complementary to the first existential literal in the
first ∃-2 clause. Then with probability (1− 1

2n )
2p2n, the first ∃-unit literal is

not complementary to any existential literal in any ∃-2 clause. Therefore, with
probability 1− (1− 1

2n )
2p2n, the first ∃-unit literal is complementary to an ex-

istential literal in a ∃-2 clause. For sufficiently large n, the two complementary
clauses will almost certainly have disjoint sets of universals and can therefore
be resolved into a new ∃-unit clause. Since we have p1n ∃-unit clauses to start
with, we will on average obtain

u =

(
1−
(

1− 1
2n

)2p2n
)
· p1n

new ∃-unit clauses. For n→ ∞, we get

lim
n→∞

u = lim
n→∞

(
1−
(
1− 1

2n

)2p2n
)
· p1n =

(
1− e−p2

)︸ ︷︷ ︸ · lim
n→∞

p1n︸ ︷︷ ︸
Θ(1) Θ(n)
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Now we can use Gent and Walsh’s argument about the unit flaw [GW99] on
these new ∃-units. According to the birthday paradox, we have a 50% chance
to find two people with the same birthday in a group of about

√
365 people. In

our case, this means that we expect to find complementary literals when we have√
2n ∃-units. Since u = Θ(n), there will almost certainly occur complementary
∃-units when n→ ∞, and they will also most likely have distinct universals, so
they can be resolved to the empty clause.

This trivial unsatisfiability explains why the FCL2 generation model, and also
our FCL2-based generation model for random QHORN formulas, is showing a
shift of the phase transition to the left as n→∞. We can conclude that unit flaws
cannot be avoided by the ad hoc approach of simply disallowing complementary
∃-unit clauses with non-blocking universals, because this still allows for triv-
ial unsatisfiability in two steps. It might be possible to refine the approach by
disallowing ∃-unit clauses which are complementary to ∃-2 clauses with non-
blocking universals, but this will probably only defer the problem another step.

Since the generation models in [GW99] and [CI05], where ∃-units are not al-
lowed at all, do not work for Horn formulas, we need another solution. Rather
than not having any ∃-units at all, we can reduce them to less than Θ(n). Theo-
rem 3.4.2 is based on the fact that the number of ∃-unit clauses grows linearly,
but trivial unsatisfiability occurs at Ω(

√
n). Our approach is therefore to modify

the random formula generation model from Section 3.4.1 such that ∃-unit clauses
are discarded and replaced with a new clause with probability 1−1/

√
n, so that

we only obtain Θ(n ·1/
√

n) = Θ(
√

n) ∃-units. We call this method FCL2-U.

Figures 3.3 and 3.4 show the phase transition behavior of the FCL2-U generation
model for Horn formulas with clause sizes h = 5 and h = 8.

We still have a slight shift of the phase transition to the left as n grows, but the
effect is much weaker than it was in the original FCL2 model (cf. Figures 3.1
and 3.2). As for the remaining effect (which is actually also weakly observable
in [GW99]), we conjecture that with larger n, we have less blocking by comple-
mentary universal variables when attempting to resolve two clauses. The fact
that this effect is more evident for h = 8 than for h = 5 appears to confirm this
conjecture, because blocking is more frequent for larger clause sizes.
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Figure 3.3.: Fraction of unsatisfiable problems for random ∀∃HORN formulas
with clause size h = 5 using the FCL2-U generation model
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Figure 3.4.: Fraction of unsatisfiable problems for random ∀∃HORN formulas
with clause size h = 8 using the FCL2-U generation model
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3.4.3. Satisfiability Model Distributions

Now that we have a suitable generation model for random QHORN formulas,
we can investigate what the satisfiability models look like for formulas near
the phase transition. In Section 3.3.3, we have already shown that satisfiable
QHORN formulas have K2 models. Furthermore, we have made the observation
that existential variables with a satisfying assignment of 0 when all universals
are 1 can remain 0 for any other combination of values that the universals may
have. With our experiments, we want to confirm that even near the phase tran-
sition, random QHORN formulas have satisfiability models with a large fraction
of constant functions fyi = 0. We also want to find out whether the remaining
non-zero functions all tend to be quite short and simple as well, or whether we
can also expect in each model a few more complicated functions.

At this point, it is useful to introduce a measurement for the complexity of in-
dividual satisfiability model functions and models as a whole. To enable fu-
ture work beyond Horn formulas, this measurement should not be specific to K2
functions. According to the definition of satisfiability models (Def. 2.7.1), each
function fyi in a model can depend on all universal variables whose quantifiers
precede the quantifier of yi. In many typical instances of random or structured
QBF formulas, however, the value of yi is influenced by just a small subset of
those universals. This is an important observation which will be fundamental
to the discussion in Chapters 4 and 5 as well. One simple approach to measure
the complexity of a model function fyi is therefore to determine the number of
variables on which it actually depends. We call this number α the actual arity
of fyi . In the case of QHORN formulas with K2 satisfiability models, this is also
an appropriate measure for the length of fyi , because in K2 functions, variables
occur at most once. For example, let Φ = ∀x1,x2,x3∃y φ with the satisfiability
model MΦ = ( fy) and fy(x1,x2,x3) = x1∧x3. Then the actual arity of fy is α = 2,
and that is also the formula length of fy.

We now obtain a satisfiability model distribution for a formula Φ by counting
for each possible arity value the number of functions in the satisfiability model
MΦ with this actual arity. The cases fyi = 0 and fyi = 1 are recorded separately
as α = F and α = T . The concept can easily be extended to sets of formulas
Φ1, ...,Φk with satisfiability models MΦ1 , ...,MΦk by counting functions among
all those models.
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For example, let Φ1,Φ2 be two formulas with the following satisfiability models:

MΦ1 = ( fy1(x1,x2) = x2, fy2(x1,x2) = 0)
MΦ2 = ( fy1(x1) = x1, fy2(x1,x2,x3) = x1∧ x2)

Then we have the model distribution

δ = {(α = F, 1), (α = T, 0), (α = 1, 2), (α = 2, 1), (α = 3, 0), ...}

which should be read as: 1 constant function f = 0, no constant function f = 1,
2 functions with arity 1, 1 function with arity 2, etc.

Please notice that satisfiability models are not unique, and a single formula may
have several different models. In fact, it is easy to show that QHORN formu-
las have the property that the intersection of two satisfiability models is again a
satisfiability model [KBSZ07]. We have addressed this ambiguity by comput-
ing the models with the algorithm from [KBSZ04] rather than choosing a faster,
but also less predictive algorithm like the one presented in Section 3.7.2 which
assembles the models from arbitrary solutions to propositional subproblems and
has therefore an inherent degree of freedom. Not only does the KBSZ algorithm
produce completely predetermined models without any freedom of choice, but
the computed models are also minimal in the sense that model functions are
preferably set to constant 0 if possible. The algorithm determines for all exis-
tentials yi the set of ∃-unit clauses with positive yi which are derivable through
Q-pos-unit resolution. A model function fyi is then composed from those uni-
versal variables which occur in all the derivable positive ∃-unit clauses with yi.
If no such unit clauses are derivable, we let fyi = 0. And if the derivable units
have distinct universals, we assign fyi = 1.

In our experiments, we have used the FCL2-U generation model to produce lots
of random QHORN formulas with identical parameters. We have extracted the
satisfiable formulas and computed their satisfiability models and the resulting
distribution. Figure 3.5 shows the model distribution we obtain for 200 formulas
Φ with ∀∗∃∗ prefix and n = 500 variables per quantifier block, i.e. Φ is of the
form Φ = ∀x1...∀x500∃y1...∃y500 φ . The clause size was h = 5, and we chose
q
n = 5, which is near the phase transition.
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Figure 3.5.: Distribution of model functions for 200 random ∀∃HORN formulas
with n = 500 variables per quantifier block, clause size h = 5 and
ratio q

n = 5

With 200 satisfiable formulas and 500 existentials each, the diagram includes a
total of 100,000 satisfiability model functions. We can observe that the majority
of them (98638) is simply the Boolean constant 0, which confirms our initial as-
sumption on the basis of the model structure. On average, there are only 6.8 out
of 500 existential variables per formula with a non-zero model function, which
means they occur in derivable positive ∃-unit clauses. On the other hand, some
of those functions have rather large arities up to 25. Thus we have an interesting
imbalance where most of the model functions are constants, whereas some sin-
gle existential variables per formula depend on many universals. Accordingly,
our formulas were quite challenging for state-of-the-art QBF solvers which did
not recognize Horn formulas.

There is an interesting pattern about the arity of the non-zero model functions:
we can recognize that there are peaks at 4, 7, 10, 13, etc. with period 3. In
general, for clause length h, the peaks are at h− 1+ i(h− 2) for i ∈ N0. To
explain this, we must examine how positive ∃-units are produced by Q-pos-unit
resolution. Our investigation is by induction on the length of Q-pos-unit reso-
lution derivations. For the induction base, notice that the formula already has
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some initial positive ∃-unit clauses with h− 1 universals each. Now consider a
clause C =(y∨¬y j1∨ ...∨¬y jm∨¬x jm+1∨ ...∨¬x jh−1) with one positive existen-
tial, 0≤ m≤ h−1 negative existentials and h−m−1 universals. We eliminate
each existential literal ¬y ji by resolving on it with a positive ∃-unit clause over
y ji and ni universals. If all universals are distinct, the resulting clause C′ has
n = ∑

m
i=1 ni +h−m−1 universals. By induction, we have ni = h−1+ci(h−2)

for some ci ∈ N0. Then n = m(h− 1) + c(h− 2) + h−m− 1 for an integer
c ≥ 0. We can rewrite this as n = m(h− 2) + m + c(h− 2) + h−m− 1 =
(m+ c)(h−2)+h−1. Clearly, n = h−1+ c̃(h−2) for some integer c̃ ∈ N0.

Notice that the argument in the previous paragraph assumes that all universals
are distinct when resolving clauses. We can certainly expect this to be the case
when n is large in comparison to the length of the clauses to be resolved. Af-
ter a few resolution steps, however, clauses are getting increasingly large, and it
becomes more likely that two resolvents have some universal variables in com-
mon. This explains why in Figure 3.5, the likelihood for arities in between the
periodic peaks increases for larger arities, i.e. for longer Q-pos-unit resolution
derivations. For example, we have more functions with arity 12 than with arity
9. Moving even further to the right, beyond arity 16, the number of occurrences
is finally decreasing for all arities, because longer resolution derivations are less
probable.

We can conclude that random QHORN formulas with fixed clause length show
a typical sat-unsat-transition behavior, but even near the phase transition, they
have fairly simple satisfiability models with characteristic patterns. It should
be emphasized that this result is specific to random formulas, where complex
Q-pos-unit resolution derivations are unlikely in satisfiable instances as they
quickly lead to unsatisfiability. On the other hand, structured Horn formulas
can be expected to have longer chains of Q-pos-unit resolution, starting with a
considerable number of initial ∃-units (the facts). The structure of the problem
will make sure that the initial units are not already unsatisfiable, which avoids the
problems of the birthday paradox kind that we encountered for random formu-
las. Another modification which makes models significantly more complex will
be discussed in the next section: quantified Horn formulas with free variables.
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3.5. Equivalence Models for QHORN∗

Formulas

As mentioned earlier, quantified Boolean formulas can be used to represent
propositional formulas in a potentially shorter form. Equivalence is preserved
by using free variables which correspond to the propositional variables in the
original formula. Free variables are therefore a powerful feature of quantified
Boolean formulas, but some of the concepts established for closed QBF for-
mulas must be adapted. In particular, satisfiability models are only defined for
formulas without free variables. The restriction can often be circumvented by
considering fixed assignments to the free variables and then treating the formula
with fixed free variables as a closed formula. This trick will later allow us to
establish many of our results also for formulas with free variables, in particular
the elimination of universal quantifiers (Section 3.6.2) and our new satisfiability
testing algorithm (Section 3.7.1). But for other problems, such as investigations
of expressiveness, working with fixed assignments to the free variables is not
sufficient.

The goal of this section is to generalize our results on satisfiability models to
“native” QHORN∗ equivalence models. According to their definition in Sec-
tion 2.7, equivalence models consist of functions which do not only depend on
dominating universal variables, but also on all the free variables. In addition,
equivalence models must lead to a tautology for each satisfying assignment to
the free variables, which in general makes them more complex than satisfiability
models.

3.5.1. Beyond K2 Functions

We have seen that closed quantified Horn formulas have K2 satisfiability models
where the model functions are conjunctions of positive universal variables. It
is easy to show that K2 is not sufficient for QHORN∗ equivalence models, even
if we restrict ourselves to existentially quantified formulas as in the following
proof.

Lemma 3.5.1. There exist QHORN∗ formulas which do not have K2 equivalence
models.
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Proof:
Consider Φ ∈ QHORN∗ with

Φ(a1,a2,b1,b2) = ∃y (a1∨¬a2∨¬y)∧ (y∨¬b1)∧ (y∨¬b2) .

Expanding the existentially quantified variable y reveals:

Φ≈Ψ := (a1∨¬a2∨¬b1)∧ (a1∨¬a2∨¬b2)

We can see that M = ( fy) with fy(a1,a2,b1,b2) = a1∨¬a2 or fy(a1,a2,b1,b2) =
b1 ∨ b2 are possible equivalence models. But there is no such fy ∈ K2: we can
verify that fy = 0, fy = 1 or fy = b1 are no equivalence models. In all other
cases, substituting fy =

∧
i∈I zi for y in the clause (y∨¬b1) will produce a binary

clause z j ∨¬b1 which is not in Ψ.

While the formula in the proof does not have a K2 equivalence model, the model
function can be written as disjunction of positive variables. But we can easily
show with an analogous proof that disjunction alone is not sufficient either. The
question then is how we can generalize K2 satisfiability models to equivalence
models for QHORN∗ formulas. We have managed to come up with the following
answer: the model functions are now conjunctions and disjunctions of positive
universals and free variables. Thus it seems that the absence of negation in the
model functions is a characteristic feature of quantified Horn formulas which is
still preserved when free variables are allowed.

3.5.2. Monotone Models

More formally, we have been able to prove that quantified Horn formulas have
monotone equivalence models. We start by defining what monotony means in
this context.

Definition 3.5.2. (Monotone Boolean Function)
Let x = (x1, ...,xn), x′ = (x′1, ..,x

′
n) ∈ {0,1}n, and let f : {0,1}n → {0,1} be a

Boolean function. Then f is monotone if and only if x≤ x′ implies f (x)≤ f (x′),
with the canonical ordering 0≤ 1 and x≤ x′ whenever xi ≤ x′i for all i.

We usually represent the Boolean functions from which equivalence models are
composed as propositional formulas. This leads to the following equivalent char-
acterization of monotony (based on [Weg87]).
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Proposition 3.5.3. A Boolean function f : {0,1}n→ {0,1} is monotone if and
only if it can be represented as a propositional formula F which contains only
positive literals and the reduced operator set {∧,∨}. We also allow F = 0 resp.
F = 1.

In the remainder of this section, we will always use this characterization of
monotony.

Definition 3.5.4. (Monotone Equivalence Model)
Let M = ( fy1 , ..., fym) be an equivalence model for a quantified Boolean formula
Φ∈QBF∗. Then M is a monotone equivalence model if and only if the functions
fyi , 1≤ i≤ m, are monotone.

Notice that when we substitute an arbitrary monotone model M for the existential
variables, the formula Φ[y/M] may not be in CNF anymore. Of course, it can
be transformed into CNF with the laws of associativity and distributivity and De
Morgan’s laws, but another problem may then occur: the resulting CNF formula
is not necessarily a Horn formula.

In our proof, however, the construction of the model assures that Φ[y/M] is a
quantified Horn formula when transformed into CNF. The class of non-CNF
formulas that may be transformed into CNF formulas with the Horn property
shall be denoted with QHORN∗L as defined below.

Definition 3.5.5. (QHORN∗L)
With QHORN∗L, we denote the class of quantified Boolean formulas Φ ∈ QBF∗

for which there exist Φ′ ∈ QHORN∗ such that Φ′ can be obtained from Φ by
applying the laws of associativity and distributivity and De Morgan’s laws.

3.5.3. QHORN∗ Equivalence Models Are Monotone

We now show that a quantified Horn formula always has a monotone equiv-
alence model. In the proof, we inductively construct such a model for any
Φ ∈ QHORN∗.

Theorem 3.5.6. Any formula Φ ∈QHORN∗ has a monotone equivalence model
M = ( fy1 , ..., fym). Moreover, M can be chosen such that Φ[y/M] ∈ QHORN∗L.
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Proof:
If Φ(z) is unsatisfiable, there is a {0,1}-equivalence model, and therefore a
monotone equivalence model M with Φ[y/M] ∈ QHORN∗L. For the remainder
of this proof, we assume the satisfiability of the input formula and prove the
theorem by induction on the number of quantifiers.

For k = 1, we have a formula with one quantifier, which may be universal or
existential. If Φ(z) = ∀x1 φ(x1,z) with a propositional formula φ , then the empty
model M = () is a monotone equivalence model for Φ.

The second case in which the quantifier is existential is more interesting. Sup-
pose Φ is given as Φ(z) = ∃y1 φ(y1,z) with a propositional formula φ . If y1 or
¬y1 occurs in φ(y1,z) as a unit clause, define fy1 = 1 or fy1 = 0, respectively.
If y1 occurs only positively or only negatively in φ(y1,z), let fy1 = 1 or fy1 = 0.
If y1 occurs both positively and negatively, let ¬ai,1∨ ...∨¬ai,si ∨y1 =: ¬Ai∨y1
be the clauses in which y1 occurs positively (1≤ i≤ cpos, where cpos is the num-
ber of those clauses). Analogously, let b j,1 ∨ ...∨b j,t j ∨¬y1 =: B j ∨¬y1 be the
clauses in which y1 occurs negatively (1≤ j≤ cneg). Finally, let C be the clauses
which contain neither y1 nor ¬y1. Clauses which contain both y1 and ¬y1 are
tautological and can therefore be removed from the formula. If y1 only occurs
in tautological clauses, we can also remove that variable itself.
We now define the model of y1. The idea is to choose a model such that tauto-
logical clauses are created when fy1 is substituted for positive instances of y1,
while substituting fy1 for the negative instances of y1 produces the expansion
φ(0,z)∨φ(1,z) of the existentially quantified formula ∃y1 φ(y1,z). That can be
accomplished with the following definition:

fy1 =
∨

1≤i≤cpos

Ai =
∨

1≤i≤cpos

(ai,1∧ ...∧ai,si)

For a clause ¬Ai∨ y1 in which y1 occurs positively, we then obtain ¬Ai∨ fy1 =
¬Ai∨A1∨ ...∨Ai∨ ...∨Acpos , which contains both Ai and ¬Ai and is thus tauto-
logical.
On the other hand, consider the set of clauses in which y1 occurs negatively:(∧

j (B j ∨¬y1)
)
[y1/ fy1 ] =

∧
j (B j ∨¬(

∨
i Ai))

≈
∧

j (B j ∨ (
∧

i¬Ai))

≈
∧

i, j (¬Ai∨B j)
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The clauses C which do not contain y1 (respectively ¬y1) remain unchanged.
As motivated before, the resulting formula Φ[y1/ fy1 ]≈

∧
i, j (¬Ai∨B j)∧C is the

expansion of the existentially quantified formula ∃y1 φ(y1,z), which can be seen
as follows:

∃y1 φ(y1,z) ≈ φ(0,z)∨φ(1,z)
≈ (

∧
i¬Ai∧C)∨

(∧
j B j ∧C

)
≈

(
(
∧

i¬Ai)∨
(∧

j B j
))
∧C

≈
∧

i, j (¬Ai∨B j)∧C

This proves that M = ( fy1) is an equivalence model for Φ(z). Please notice that∧
i, j (¬Ai∨B j)∧C is a Horn formula, because the ¬Ai contain only negative lit-

erals, and each B j has at most one positive literal. Thus, Φ[y1/ fy1 ] ∈ QHORN∗L.

Now let k > 1. Again, we have two cases: the outer quantifier may either be uni-
versal or existential. If it is universal, Φ has the form Φ(z) = ∀xk Φ′(xk,z), where
Φ′ is a formula with k−1 quantifiers. If Φ∈QHORN∗, then also Φ′ ∈QHORN∗,
and by the induction hypothesis, Φ′ has a monotone equivalence model MΦ′ with
Φ′[y/MΦ′ ] ∈ QHORN∗L. MΦ′ is also a monotone equivalence model for Φ, be-
cause Φ′ ≈Φ′[y/MΦ′ ] implies:

Φ(z) = ∀xk Φ′(xk,z) ≈ ∀xk (Φ
′(xk,z)[y/MΦ′ ]) = (∀xk Φ′(xk,z))[y/MΦ′ ]

= Φ(z)[y/MΦ′ ]

Obviously, Φ[y/MΦ′ ] ∈ QHORN∗L as well.

In the second case, the outer quantifier is existential, and Φ has the form Φ(z) =
∃yk Φ′(yk,z). Notice that yk is a free variable in Φ′. If Φ′ contains only universal
quantifiers, we can remove all of them, as they do not dominate any existentially
quantified variables. We are then left with only one existential variable and can
proceed as in the induction base. For the remainder of this proof, we assume that
Φ′ contains at least one existentially quantified variable.
As above, Φ′ is a formula with k− 1 quantifiers, and according to the induc-
tion hypothesis, it has a monotone equivalence model MΦ′ = ( f ′y1

, ..., f ′yk−1
) with

Φ′[y/MΦ′ ] ∈ QHORN∗L. Φ′(yk,z)≈Φ′(yk,z)[y/MΦ′ ] implies

Φ(z) = ∃ykΦ
′(yk,z)≈ ∃yk (Φ

′(yk,z)[y/MΦ′ ]) .

Now, Φ′[y/MΦ′ ] ∈ QHORN∗L means that there exists Φ′′(z) ∈ QHORN∗ such
that Φ′′(z) ≈ ∃yk (Φ

′(yk,z)[y/MΦ′ ]). Under the assumption that Φ′ contains at
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least one existential variable, Φ′[y/MΦ′ ] has less than k− 1 quantifiers. Thus,
Φ′′ has less than k quantifiers, and only the outermost is existential. By the
induction hypothesis, it has a monotone equivalence model MΦ′′ = ( f ′′yk

) with
Φ′′[yk/ f ′′yk

] ∈ QHORN∗L.
We now combine MΦ′ = ( f ′y1

, ..., f ′yk−1
) and MΦ′′ = ( f ′′yk

) into a monotone equiv-
alence model M = ( fy1 , ..., fyk) for the original formula Φ by assigning fyi =
f ′yi
[yk/ f ′′yk

] for 1 ≤ i ≤ k− 1 and fyk = f ′′yk
. It is obvious that M is monotone.

Informally, it is also clear that M is an equivalence model for Φ, but the formal
proof is somewhat tedious:

Φ(z) ≈ Φ′′(z)
≈ Φ′′(z)[yk/ f ′′yk

]

≈ (∃yk (Φ
′(yk,z)[y1/ f ′y1

, ...,yk−1/ f ′yk−1
]))[yk/ f ′′yk

]

= (∃yk Φ′(yk,z))[y1/ f ′y1
[yk/ f ′′yk

], ...,yk−1/ fyk−1 [yk/ f ′′yk
],yk/ f ′′yk

]

= (∃yk Φ′(yk,z))[y1/ fy1 , ...,yk/ fyk ]

= Φ(z)[y/M]

Φ(z)[y/M] ∈ QHORN∗L, because Φ′′(z)[yk/ f ′′yk
] ∈ QHORN∗L and Φ(z)[y/M] ≈

Φ′′(z)[yk/ f ′′yk
].

The previous result reveals the structure of equivalence models for QHORN∗ for-
mulas. Unfortunately, the proof itself does not lead to a feasible algorithm for
finding those equivalence models. The problem with the algorithm suggested by
the proof is that the formula which is being worked on may blow up exponen-
tially. As the algorithm moves step by step from the innermost quantifiers to the
outermost quantifiers, the model found in the previous step is always substituted
into the given formula which is then re-transformed into CNF. In the end, the
remaining universal quantifiers can easily be dropped, and we obtain a propo-
sitional CNF formula, which must be exponentially longer for certain formulas
due to the previously mentioned result that CNF <poly−length QHORN∗. We will
see in Section 3.8 that there is a close connection between quantified Horn for-
mulas and Boolean circuits in which inner nodes are allowed to have more than
one outgoing edge. It is widely assumed that these are exponentially more con-
cise than arbitrary propositional formulas. Then there would also be QHORN∗

formulas for which every equivalent propositional formula has exponential size,
which in turn implies that such formulas cannot have polynomial-size equiva-
lence models.
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3.6. Elimination of Universal Quantifiers

In the previous section, we have just encountered once again the infeasibility of
eliminating the existential quantifiers in a QHORN∗ formula, so we now turn our
attention to the universal quantifiers. Section 3.3 has revealed that cases where
at most one of the universal variables is false completely determine the behavior
of the existential quantifiers, which represents a very strong restriction on the
expressive power of universal quantifiers in Horn formulas. So far, we have
proved this for closed formulas, but we now extend it to QHORN∗ by considering
fixed assignments to the free variables. We show that this result significantly
facilitates eliminating the universal quantifiers, which allows us to remove all of
them and still avoid the exponential growth that is associated with eliminating
both kinds of quantifiers. Let us begin with the following definition:

Definition 3.6.1. (∃HORN∗, ∃k-HORN∗, ∃BF∗)
A formula Φ ∈ QHORN∗ (Qk-HORN∗ for a constant k ≥ 2, respectively) is an
existentially quantified (k-)Horn formula with free variables if it is of the form
Φ(z) = ∃y1...∃ym φ(z,y1, ...,ym), m ≥ 0, i.e. if it does not contain universally
quantified variables. The class of all such formulas we denote by ∃HORN∗

(∃k-HORN∗, respectively). Analogously, we let ∃BF∗ denote purely existentially
quantified Boolean formulas.

The goal of our investigation is to transform an arbitrary formula in QHORN∗

into an equivalent formula in ∃HORN∗ with a polynomial increase in length. Our
idea is to perform universal expansion on all universal quantifiers at once. We
first consider this transformation in general for QBF∗ formulas, in which case it
will clearly show exponential blowup, and then prove that it can be simplified to
polynomial size for QHORN∗.

3.6.1. Basic Universal Expansion Algorithm for QBF∗

As suggested in the introductory chapter, expanding a single universal quantifier
∀x is rather straightforward when we consider the quantifier as an abbreviation
for the universally quantified variable x being true in one case and being false in
the other case. That means we must generate two copies of the original matrix
and can then drop x from the prefix:

Qv∀x φ(x,v,z)≈ Qv φ(0,v,z)∧φ(1,v,z)
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Special care must be taken if there are existential quantifiers that are in the scope
of ∀x. In the formula Qv∀x∃y1...∃ym φ(x,y1, ...,ym,v,z), each of the innermost
existentials can be assigned at least two different truth values: one for the case
x = 0 and one for x = 1. As (∃y Φ(0,y))∧(∃y Φ(1,y)) 6≈ ∃y (Φ(0,y)∧Φ(1,y)),
such existential variables yi need to be duplicated as well to reflect the degree
of freedom to have different values of yi for different values of the preceding x.
For example, in the formula ∃y1∀x∃y2 φ(x,y1,y2), the choice for the existential
variable y2 depends on the value of x. We must therefore introduce two sepa-
rate instances y(0)2 and y(1)2 of the original variable y2, where y(0)2 is used in the
copy of the matrix for x = 0, and analogously y(1)2 for x = 1. We obtain the
result ∃y1∃y(0)2 ∃y

(1)
2 φ(0,y1,y

(0)
2 )∧φ(1,y1,y

(1)
2 ). In general, the expansion is as

follows:

Qv∀x∃y1...∃ym φ(x,y1, ...,ym,v,z) ≈ Qv∃y(0)1 ...∃y(0)m ∃y(1)1 ...∃y(1)m

φ(0,y(0)1 , ...,y(0)m ,v,z)
∧ φ(1,y(1)1 , ...,y(1)m ,v,z)

At this point, we do not provide a formal proof of the above equivalence. On the
one hand, it immediately follows from our initial remarks, and on the other hand,
we will later prove an even more useful generalization of it in Theorem 5.3.1,
Section 5.3.1.

Existing applications of universal expansion [AB02, Bie05] perform only such
single expansion steps and alternate them with other techniques like Q-resolution
or quantifier miniscoping to prevent the expanded formula from growing too
quickly due to repeated duplications of the matrix. In contrast, we now consider
the complete expansion of all universal quantifiers at once and investigate how
to simplify it for QHORN∗ formulas. In order to do so, we first need a detailed
formalization of the general case.

Let Φ ∈QBF∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z) be the for-
mula whose universal quantifiers we want to expand. Xi = (xi,1, ...,xi,ni) and
Yi = (yi,1, ...,yi,mi) (ni ≥ 1 and mi ≥ 1, i = 1, ...,r, r≥ 1) are the quantifier blocks
in the prefix, and φ is the propositional matrix. Without loss of generality, we
assume that the outermost quantifiers are universal. If they were existential, we
could treat these existentially quantified variables as free variables, and the out-
ermost quantifiers in the remaining prefix would then be universal. Furthermore,
we assume that the innermost quantifiers are existential.
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When expanding all universals in Φ(z), starting with the innermost, we obtain:

Φ∃exp(z) :=
∧

A1∈{0,1}n1

(
∃Y A1

1∧
A2∈{0,1}n2

(
∃Y A1A2

2

...∧
Ar∈{0,1}nr

(
∃Y A1...Ar

r φ(A1...Ar,Y
A1
1 ...Y A1...Ar

r ,z)
)
...
))

The tuples Ai represent the possible truth assignments to the universal variables
xi,1, ...,xi,ni . The expression

∧
Ai∈{0,1}ni should be understood as a conjunction of

2ni clauses, one for each truth assignment. Finally, ∃Y A1...Ai
i is an abbreviation

for ∃yA1...Ai
i,1 ...∃yA1...Ai

i,mi
, the copies of the i-th block of existential quantifiers. The

additional index A1...Ai is used to tag each copy with the values of the preceding
universal variables. Its purpose is to have a unique name for each of those copies.
For example, four copies of yi, j would be named y(0,0)i, j , y(0,1)i, j , y(1,0)i, j and y(1,1)i, j .

Using induction on the number of blocks of universal quantifiers, it is possible
to show that Φ(z) ≈ Φ∃exp(z). We omit this, as it is quite obvious that Φ∃exp is
simply the formalization of the elimination algorithm described above.

Here is an example: the formula

Φ(z) = ∀x1∃y1∀x2∀x3∃y2 φ(x1,x2,x3,y1,y2,z)

is expanded to

Φ∃exp(z) = ∃y
(0)
1 (∃y(0,0,0)2 φ(0,0,0,y(0)1 ,y(0,0,0)2 ,z)∧∃y(0,0,1)2 φ(0,0,1,y(0)1 ,y(0,0,1)2 ,z) ∧

∃y(0,1,0)2 φ(0,1,0,y(0)1 ,y(0,1,0)2 ,z)∧∃y(0,1,1)2 φ(0,1,1,y(0)1 ,y(0,1,1)2 ,z))∧

∃y(1)1 (∃y(1,0,0)2 φ(1,0,0,y(1)1 ,y(1,0,0)2 ,z)∧∃y(1,0,1)2 φ(1,0,1,y(1)1 ,y(1,0,1)2 ,z) ∧

∃y(1,1,0)2 φ(1,1,0,y(1)1 ,y(1,1,0)2 ,z)∧∃y(1,1,1)2 φ(1,1,1,y(1)1 ,y(1,1,1)2 ,z))

Φ∃exp is not in prenex form. This would be easy to fix by moving all quantifiers
to the front. In the sample formula above, the prefix might then look like

∃y(0)1 ∃y
(0,0,0)
2 ∃y(0,0,1)2 ∃y(0,1,0)2 ∃y(0,1,1)2 ∃y(1)1 ∃y

(1,0,0)
2 ∃y(1,0,1)2 ∃y(1,1,0)2 ∃y(1,1,1)2 .

For clarity’s sake, we did not consider this in the general formula Φ∃exp.
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3. Quantified Horn Formulas: Models and Transformations

As the expansion example above demonstrates, the resulting formula is rather
voluminous. In general, it is exponentially longer: if there are n universal quan-
tifiers in an input formula Φ, its expansion Φ∃exp contains 2n copies of the orig-
inal matrix. Fortunately, we can discard most of these copies in the special case
of quantified Horn formulas.

3.6.2. Universal Expansion for QHORN∗ Formulas

Definition 3.6.2. (Universal Expansion for QHORN∗)
Let Φ ∈ QHORN∗ with

Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z)

where Xi = (xi,1, ...,xi,ni) and Yi = (yi,1, ...,yi,mi) (ni ≥ 1 and mi ≥ 1, i = 1, ...,r,
r ≥ 1), be a quantified Horn formula whose outermost quantifiers are universal
and whose innermost quantifiers are existential.

Then we define the formula Φ∃poly(z) as

Φ∃poly(z) :=
∧

A1∈Assign1

(
∃Y A1

1∧
A2∈Assign2(A1)

(
∃Y A1A2

2

...∧
Ar∈Assignr(A1...Ar−1)

(
∃Y A1...Ar

r φ(A1...Ar,Y
A1
1 ...Y A1...Ar

r ,z)
)
...
))

with the restricted set of possible assignments

Assign1 = Z≤1(n1)

Assigni(A1, ...,Ai−1) =

{
Z≤1(ni) , ifA1...Ai−1 = {1}n1+...+ni−1 = (1, ...,1)
{1}ni , else

The only difference between the formula Φ∃poly and the expansion Φ∃exp for
general QCNF∗ formulas which was presented in the previous section is that
for quantified Horn formulas, not all possible truth assignments to the univer-
sally quantified variables have to be considered. For Horn formulas, we discard
assignments where more than one universal variable is false.
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3.6. Elimination of Universal Quantifiers

For the formula

Φ(z) = ∀x1∃y1∀x2∀x3∃y2 φ(x1,x2,x3,y1,y2,z)

from the example in the previous section, we have

Φ∃poly(z) = ∃y(0)1 ∃y(0,1,1)2 φ(0,1,1,y(0)1 ,y(0,1,1)2 ,z)∧
∃y(1)1 ( ∃y(1,0,1)2 φ(1,0,1,y(1)1 ,y(1,0,1)2 ,z)∧

∃y(1,1,0)2 φ(1,1,0,y(1)1 ,y(1,1,0)2 ,z)∧
∃y(1,1,1)2 φ(1,1,1,y(1)1 ,y(1,1,1)2 ,z))

Before we can prove that Φ∃poly is indeed equivalent to Φ when Φ ∈ QHORN∗,
we make a fundamental observation: for the special case of closed formulas
Φ ∈ QHORN, the satisfiability of Φ∃poly implies the existence of a Z≤1-partial
satisfiability model for Φ.

Lemma 3.6.3. Let Φ∈QHORN be a quantified Horn formula without free vari-
ables, and let Φ∃poly be defined as above. If Φ∃poly is satisfiable then Φ has a
Z≤1-partial satisfiability model.

Proof:
Let t be a satisfying truth assignment to the existentials in Φ∃poly. This assign-
ment t provides us with all the information needed to construct a Z≤1-partial
satisfiability model for Φ.

The idea is to assemble the truth assignments to the individual copies y
(x1,1,...,xi,ni )

i, j
of an existential variable yi, j into a common model function. It works as follows:
let yi, j be an existential variable in Φ whose corresponding quantifier is preceded
by the universal quantifiers ∀x1,1...∀xi,ni . Then we define:

fyi, j(x1,1, ...,xi,ni) = (¬x1,1∧ x1,2∧ ...∧ xi,ni → t(y(0,1,...,1)i, j ))

∧ (x1,1∧¬x1,2∧ x1,3∧ ...∧ xi,ni → t(y(1,0,1,...,1)i, j ))

∧ ...

∧ (x1,1∧ ...∧ xi,ni−1∧¬xi,ni → t(y(1,...,1,0)i, j ))

∧ (x1,1∧ ...∧ xi,ni → t(y(1,...,1)i, j ))
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3. Quantified Horn Formulas: Models and Transformations

Now, the fyi, j form a Z≤1-partial satisfiability model for Φ, because for all

x = (x1,1, ...,xr,nr) with x ∈ Z≤1, we have fyi, j(x1,1, ...,xi,ni) = t(y
(x1,1,...,xi,ni )

i, j ) and

φ(x, t(y
(x1,1,...,x1,n1 )

1,1 ), ..., t(y
(x1,1,...,xr,nr )
r,mr )) = 1 as Φ∃poly is satisfiable.

Using Lemma 3.6.3 in combination with Theorem 3.3.5, it is now easy to show
that Φ∃poly is equivalent to Φ.

Theorem 3.6.4. Let Φ ∈QHORN∗ be a quantified Horn formula with free vari-
ables, and let Φ∃poly be its poly-length universal expansion as in Definition 3.6.2.
Then Φ∃poly ≈Φ.

Proof:
The implication Φ(z) |= Φ∃poly(z) is obvious, as the clauses in Φ∃poly are just a
subset of the clauses in Φ∃exp, which in turn is equivalent to Φ.

The implication Φ∃poly(z) |= Φ(z) is more interesting. Assume that Φ∃poly(z∗)
is satisfiable for some fixed z∗. With the free variables fixed, we can treat both
Φ∃poly(z∗) and Φ(z∗) as closed formulas and apply Lemma 3.6.3 and the results
from Section 3.3.1 as follows:
According to Lemma 3.6.3, the satisfiability of Φ∃poly(z∗) implies that Φ(z∗)
has a Z≤1-partial satisfiability model. On this partial model, we can apply the
total completion from Definition 3.3.3 and Theorem 3.3.5 to obtain a (total)
satisfiability model. The fact that Φ(z∗) has a satisfiability model implies that
Φ(z∗) is satisfiable.

In the definition of Φ∃poly, we can observe that there is one instantiation of the
matrix of the original formula for each possible assignment to the universal vari-
ables in which either all of those variables are true or exactly one of them is
false. There are n+1 such assignments. Furthermore, the previous theorem has
shown that Φ∃poly is equivalent to Φ, so we have the following corollary.

Corollary 3.6.5. For any quantified Horn formula Φ∈QHORN∗ with free vari-
ables, there exists an equivalent formula Φ′ ∈ ∃HORN∗ without universal quan-
tifiers. The length of Φ′ is bounded by |∀| · |Φ|, where |∀| is the number of
universal quantifiers in Φ, and |Φ| is the length of Φ.
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3.6. Elimination of Universal Quantifiers

3.6.3. The ∃HORN∗ Transformation Algorithm

It is easy to see that our ∃HORN∗ transformation can be computed in polynomial
time. Let Φ ∈ QHORN∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z)
where Xi = (xi,1, ...,xi,ni) and Yi = (yi,1, ...,yi,mi) (ni,mi ≥ 1, i = 1, ...,r, r≥ 1), be
a quantified Horn formula whose outermost quantifiers are universal and whose
innermost quantifiers are existential. Listing 3.1 presents an algorithm to trans-
form Φ into Φ∃poly as described above.

Listing 3.1: The ∃HORN∗ transformation algorithm

Input Φ ∈ QHORN∗, Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z),
where Xi = (xi,1, ...,xi,ni ) and Yi = (yi,1, ...,yi,mi );

φ∃poly = /0;
for (i = 1 to r)
for ( j = 1 to ni) Axi, j = 1;

for (i = 1 to r) {
for ( j = 1 to ni) {

Axi, j = 0;

for (k = i to r)
for (l = 1 to mk) y′k,l = new ∃−var;

φ∃poly = φ∃poly ∪φ [x/Ax,y/y′]; // (∗)
Axi, j = 1;

}
for (l = 1 to mi) y′i,l = new ∃−var;

}
φ∃poly = φ∃poly ∪φ [x/Ax,y/y′]; // (∗)
Φ∃poly = ∃y′ φ∃poly;

Output Φ∃poly ∈ ∃HORN∗ with Φ∃poly ≈Φ.

In the main loop of the algorithm, one universal variable xi, j is given the value
false, while all the others are true. For any such assignment Ax, all existential
variables which are dominated by xi, j (i.e. their corresponding quantifier follows
∀xi, j) have to be replaced by independent new variables y′. Then, the matrix of
the original formula has to be duplicated, with Ax being substituted for x and
y′ being substituted for y. After executing the main loop, one additional copy is
needed for the case where all universal variables are true. Notice that we treat the
existential variables as objects. If we let y′i, j = new∃-var and use this variable
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3. Quantified Horn Formulas: Models and Transformations

in multiple locations, then all share the same variable object, which means all
those subformulas share that existential variable. The lines marked with (*) need
time O(|Φ|). They are executed n1+ ...+nr +1 = |∀|+1 times, so the algorithm
in total requires time O(|∀| · |Φ|).

With this result, it is safe to say that the class QHORN∗ is not significantly
more expressive than the class ∃HORN∗. Under the relation =poly−time from
Definition 2.6.1, both classes are equivalent.

Corollary 3.6.6. QHORN∗ =poly−time ∃HORN∗.

3.7. Satisfiability Testing and Model
Computation

The ability to eliminate all universal quantifiers from QHORN∗ formulas is not
only a powerful tool for simplification, but also opens up the possibility to
solve those formulas by transforming them into satisfiability-equivalent propo-
sitional formulas. Accordingly, we now present an efficient new algorithm for
the QHORN∗ satisfiability problem and show how it can be extended to also
compute the actual satisfiability models for true QHORN formulas.

3.7.1. Solving QHORN∗ Formulas

Let Ψ(z) ∈ ∃HORN∗ be an existentially quantified Horn formula of the form
Ψ(z) = ∃y1...∃ym ψ(y1, ...,ym,z). Then Ψ(z) is satisfiable if and only if its
matrix ψ(y1, ...,ym,z) is satisfiable. The latter is a purely propositional for-
mula, therefore a satisfiability solver for propositional Horn formulas can be
used to determine the satisfiability of an arbitrary formula in ∃HORN∗. That
makes ∃HORN∗ a suitable representation for satisfiability testing. And since we
have just shown that we can efficiently transform arbitrary QHORN∗ formulas
into ∃HORN∗, it appears attractive to always take this detour from QHORN∗ to
∃HORN∗. We then obtain the following algorithm for determining the satisfia-
bility of a formula Φ ∈ QHORN∗:

1. Transform Φ into Φ∃poly ∈ ∃HORN∗ with |Φ∃poly| = O(|∀| · |Φ|). This
requires time O(|∀| · |Φ|) as discussed in Section 3.6.3.
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2. Determine the satisfiability of φ∃poly, which is the purely propositional ma-
trix of Φ∃poly. It is well known [DG84] that propositional Horn formulas
can be solved in linear time, in this case O(|φ∃poly|) = O(|∀| · |Φ|).

In total, the algorithm requires time O(|∀| · |Φ|). The best existing algorithm
presented in [FKKB95, KBL99] has the same complexity, but that algorithm is
significantly more complicated and cannot directly reuse existing propositional
satisfiability solvers like this new algorithm does. The most important advan-
tage, however, is that our algorithm is not only capable of deciding satisfiability.
It can be extended to also find the actual satisfiability models for true QHORN
formulas. As demonstrated in the following section, this can be accomplished in
time O(|∀| · |Φ|), i.e. without an increase in complexity.

3.7.2. Computing Satisfiability Models for QHORN
Formulas

The proof of Lemma 3.6.3 describes how a Z≤1-partial satisfiability model for a
formula Φ ∈ QHORN is obtained by solving Φ∃poly. This leads to the following
basic algorithm for finding a K2 satisfiability model for Φ:

1. Transform Φ into Φ∃poly and solve it as discussed above.

2. Obtain a Z≤1-partial satisfiability model according to the proof of Lemma
3.6.3.

3. Use total completion (Definition 3.3.3) to construct a total satisfiability
model.

A closer look at steps 2 and 3 shows that we do not actually have to write down
the Z≤1-partial satisfiability model, because the total completion only needs cer-
tain values of the partial model:

f t
yi
(x1, ...,xni) := (x1 ∨ fyi(0,1,1, ...,1))

∧ (x2 ∨ fyi(1,0,1, ...,1))
∧ ...

∧ (xni ∨ fyi(1,1, ...,1,0))
∧ fyi(1, ...,1)
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3. Quantified Horn Formulas: Models and Transformations

In this excerpt from Definition 3.3.3, f t
yi

is the total completion, and fyi belongs
to the partial model. And according to the proof of Lemma 3.6.3, the fyi are
given as

fyi(x1, ...,xni) = (¬x1∧ x2∧ ...∧ xni → t(y(0,1,...,1)i ))

∧ (x1∧¬x2∧ x3∧ ...∧ xni → t(y(1,0,1,...,1)i ))

∧ ...

∧ (x1∧ ...∧ xni−1∧¬xni → t(y(1,...,1,0)i ))

∧ (x1∧ ...∧ xni → t(y(1,...,1)i ))

where t is a satisfying truth assignment to the existentials yA
i (the copies of yi)

in Φ∃poly. Now, notice that fyi(0,1, ...,1) = t(y(0,1,...,1)i ), etc. That allows us to
combine both definitions, and we obtain the following lemma.

Lemma 3.7.1. Let Φ = Qφ(x,y) ∈ QHORN be a quantified Horn formula with
universal variables x = (x1, ...,xn) and existential variables y = (y1, ...,ym), and
suppose that Φ is satisfiable, which means its expansion Φ∃poly is also satisfi-
able. Let t be a satisfying truth assignment to the existentials in Φ∃poly.
Then M = ( fy1 , .., fym) with

fyi(x1, ...,xni) := (x1 ∨ t(y(0,1,1,...,1)i ))

∧ (x2 ∨ t(y(1,0,1,...,1)i ))

∧ ...

∧ (xni ∨ t(y(1,1,...,1,0)i ))

∧ t(y(1,...,1)i )

is a satisfiability model for Φ.

This allows us to refine the algorithm for finding a K2 satisfiability model for a
formula Φ ∈ QHORN:

1. Solve Φ as in Section 3.7.1 by transforming it into Φ∃poly. If Φ∃poly is
unsatisfiable, Φ has no satisfiability model. Otherwise, we obtain a satis-
fying truth assignment to the existentials in Φ∃poly.

2. Use this assignment to construct a K2 satisfiability model according to the
previous Lemma 3.7.1.
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The first step requires time O(|∀| · |Φ|), and the second needs time O(|∃| · |∀|).
In total, we can find the model in O(|∀| · |Φ|+ |∃| · |∀|) = O(|∀| · |Φ|).

Theorem 3.7.2. Let Φ ∈ QHORN∩QSAT be a satisfiable quantified Horn for-
mula. Then we can find a K2 satisfiability model for Φ in time O(|∀| · |Φ|), where
|∀| is the number of universal quantifiers in Φ, and |Φ| is the length of Φ.

This result solves the open question from [KBSZ04] whether there is a quadratic
algorithm for computing QHORN satisfiability models. It appears that finding
the models is just as hard as determining satisfiability.

3.8. Augmenting Propositional Formulas with
QHORNb

In Sections 1.1 and 2.6, quantified Boolean formulas with free variables have
been motivated as a means to provide (potentially) shorter equivalent represen-
tations of propositional formulas. In this scenario, the free variables correspond
to the original variables of the propositional formula. Additional variables are
introduced as quantified variables, which can, for example, abbreviate repeating
parts in the formula, without losing equivalence to the original formula. That
input formula may have an arbitrary structure, but the quantified variables are
usually added according to a particular algorithm, which means those parts of
the resulting QBF∗ formula that are formed by the quantified variables may in-
deed have a special structure.

The following definition introduces such formulas where the quantified variables
belong to a particular formula class, while the free variables are in arbitrary CNF
form.

Definition 3.8.1. (QKb)
Let QK be a subclass of QCNF. With QKb, we denote all QCNF∗ formulas which
are in QK after removing literals with free variables.

Proposition 3.8.2. For any class QK⊆ QCNF, we have the obvious inclusions

QK⊆ QK∗ ⊆ QKb .
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In Section 3.1, we have already introduced QHORNb as a special case of the
preceding definition. In QHORNb, the Horn property is only enforced on the
quantified variables. That means we have a subclass of QCNF∗ in which each
clause has at most one positive literal over quantified variables, but an arbitrary
number of free literals with arbitrary polarity. In Section 2.6, we had the formula

φ(z) =
∧

i, j=1..k,
i 6= j

(φi(z)∨ψ j(z))

where φi and ψ j are disjunctions of literals over z. The QCNF∗ equivalent

Φ(z) = ∀x1...∀xk∃y
∧

i=1..k

((¬y∨φi(z)∨ xi)∧ (y∨ψi(z)∨¬xi))

is in QHORNb, because

Φ
b = ∀x1..∀xk∃y

∧
i=1..k

((¬y∨ xi)∧ (y∨¬xi))

is a QHORN formula. The example illustrates the benefits of going from CNF to
QHORNb for formula compression, in this case especially if φi and ψ j are long
and/or k is large. Interestingly, there are other important applications that fall
into the class QHORNb. We will now see that the well-known Tseitin transfor-
mation also produces such formulas.

3.8.1. The Tseitin Transformation

The Tseitin procedure (initially suggested in [Tse70]) is used to transform arbi-
trary propositional formulas in NNF into satisfiability-equivalent CNF formulas
with only polynomial growth. This is a very important task, since SAT solvers
or propositional proof systems have often been designed specifically for formu-
las in CNF. The idea of the procedure is to successively replace subformulas
α ∨ (β ∧ γ) with (α ∨¬y)∧ (y∨β )∧ (y∨ γ) for a new variable y. This can be
understood as introducing an abbreviation¬y↔ (β ∧γ), which can be simplified
to ¬y→ (β ∧ γ) without altering the satisfiability of the formula [PG86] 2. The
process continues as long as such subformulas exist. The resulting formula ψ is

2We could also abbreviate y→ (β ∧ γ), which appears more natural, but that requires negations in
two clauses (¬y∨β ) and (¬y∨ γ), instead of only one negation in the clause (α ∨¬y).
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satisfiable if and only if the initial formula φ is satisfiable, so we have φ ≈SAT ψ ,
and it can be shown that the length of ψ is linear in the length of φ [KBL99].

In QBF∗, we have a stronger relationship with full equivalence α ∨ (β ∧ γ) ≈
∃y (α ∨¬y)∧ (β ∨ y)∧ (γ ∨ y). Let φ be the initial propositional formula and ψ

the output of the Tseitin procedure with newly introduced variables y1, . . . ,ym.
Then we define Ψ := ∃y1 . . .∃ym ψ , such that all Tseitin variables are existen-
tially quantified and the original variables in ψ are the free variables of Ψ, and
we have full equivalence φ ≈ Ψ. Another advantage of this quantified notation
is that it becomes immediately clear which variables are the auxiliary variables.

Notice that the Tseitin procedure introduces only existentially quantified vari-
ables. With ∃HORNb ⊆ QHORNb, we denote QCNF∗ formulas where an exis-
tentially quantified Horn formula is left when the free variables are removed.

Lemma 3.8.3. The Tseitin transformation produces ∃HORNb formulas.

Proof:
The algorithm successively replaces subformulas α ∨ (β ∧ γ). This can be done
in a top-down fashion, starting with the outermost misplaced ∧ symbol. A con-
junction is misplaced if it has a ∨-node as ancestor in the formula tree. After
adding new clauses of the form (α ∨¬y) or (β ∨ y) in a recursion step, further
recursion on (α ∨¬y) is harmless at this point to the Horn property, because y
occurs negatively. On the other hand, if we need to recursively work on a clause
(β ∨ y) which already has a positive existential variable y, all new existentials
which are going to be added during the recursion will only occur negatively in
clauses with y. Let β = β̃1∨ (β̃2∧ β̃3) (β̃1 may also be empty, i.e. β̃1 = 0), then
recursion produces new clauses of the form (β̃1 ∨ y∨¬ỹ)∧ (β̃2 ∨ ỹ)∧ (β̃3 ∨ ỹ)
when we require that the Tseitin procedure uses a new name for each additional
existential variable. Now we can inductively apply this argument to the clauses
(β̃1∨ y∨¬ỹ), (β̃2∨ ỹ) and (β̃3∨ ỹ).

3.8.2. Graph Encodings

It is possible to represent propositional formulas as graphs with special structure,
a well-known example being Boolean circuits. Such graphs can then be encoded
into short equivalent formulas in ∃HORNb, and thus with a matrix in CNF, which
makes this approach an alternative to the Tseitin procedure from the last section.

71



3. Quantified Horn Formulas: Models and Transformations

A Boolean circuit over {∧,∨,¬} is a directed acyclic graph whose inner nodes
are labeled with ∧,∨, or ¬. It has also some source nodes labeled with literals as
inputs and exactly one outgoing edge (the sink) to provide an output. Circuits in
negation normal form (sometimes also called standard form) have the additional
restriction that the negation¬may not occur as an inner node, only the inputs can
be literals x or ¬x. By De Morgan’s laws, arbitrary circuits can be transformed in
linear time into equivalent circuits in negation normal form, so we assume in the
following discussion without loss of generality that all circuits are in negation
normal form.

It is well known [BBF+73, AB81] that we can associate to any circuit C in nega-
tion normal form a satisfiability-equivalent formula in 3-CNF whose length is
linear in the size of the circuit:
First, we label any edge with a new variable. Say the set of these variables is
{y1, . . . ,ym,y}, where y denotes the sink.

For a ∧-node
yi−→∧

y j−→ =
yr−→, we obtain the clauses yi→ yr and y j→ yr.

For a ∨-node
yi−→∨

y j−→ =
yr−→, we obtain the clause (yi∧ y j)→ yr.

For an input edge L
yi−→ with a literal L, we add the clause L∨ yi.

Finally, the sink
y−→ is represented by the unit clause ¬y.

The matrix of the resulting formula is the conjunction of these clauses. When the
variables y,y1, ...,ym are quantified existentially, the circuit is logically equiva-
lent to the formula:

ΦC := ∃y∃y1...∃ym
∧

yi−→∧
y j−→ =

yr−→
(yi→ yr)∧ (y j→ yr)

∧
∧

yi−→∨
y j−→ =

yr−→
((yi∧ y j)→ yr)

∧
∧

L
yi−→(L∨ yi)∧¬y

It is easy to see that this formula is in ∃HORNb and can be constructed in poly-
nomial time. So we have CIRCUITS ≤poly−time ∃HORNb, and that also implies
PROP ≤poly−time ∃HORNb. Notice, however, that propositional formulas only
correspond to a special class of circuits in which every inner node has exactly
one outgoing edge. Such circuits are said to have fan-out 1. On the other hand,
circuits with fan-out greater than 1 have the powerful capability of reusing in-
termediate results computed by some part of the circuit in multiple subsequent
computations in other parts of the circuit. This is similar to the ability of in-
troducing abbreviations by quantified variables in ∃HORNb. Accordingly, the
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above transformation of circuits into ∃HORNb formulas also works without any
problems for circuits having fan-out greater than 1. In fact, it is also possible to
perform a polynomial-time transformation in the other direction, which implies
CIRCUITS =poly−time ∃HORNb [AB81, KBZB09]. It is widely assumed that cir-
cuits with fan-out greater than 1 do not have equivalent polynomial size circuits
with fan-out 1, which would also imply that ∃HORNb is exponentially more
powerful than PROP, that means PROP <poly−length ∃HORNb. As mentioned in
Section 3.2, it is already clear that CNF <poly−length ∃HORNb [KBL99].

In the encoding ΦC from above, we observe that the input literals of the circuit
only occur in one clause each. All other clauses contain only the existentially
quantified auxiliary variables, and quite a lot of these extra variables are needed:
one for every edge in the circuit. Using this approach for CNF transformation
clearly requires more auxiliary variables than the Tseitin transformation, which
raises the question whether we can do better than that, and maybe even better
than the Tseitin procedure.

We now introduce a new graph-based approach which requires less auxiliary
variables. The underlying structure is a multigraph with serial and parallel con-
nections, known as series-parallel graph [Sha38, Mac92]. It is not difficult to
see that these graphs have the same expressive power as propositional formulas
in NNF when the edges are labeled with propositional literals [Sha38]. Shan-
non considers circuits of relays and switches in which he equates serial con-
nections with disjunctions and parallel edges with conjunctions. But mapping
given graphs in this way to formulas does obviously not produce CNF if a par-
allel connection is embedded in a serial one. We suggest an extended graph
representation from which we can always extract in a straightforward way for-
mulas in ∃HORNb, and thus with a matrix in CNF. The idea is to label also
the vertices of the graph, but only with new auxiliary variables, which will later
be quantified existentially. Furthermore, we extend the labeling of the edges
from single input literals to propositional formulas over input literals, in order
to make better use of the capability of ∃HORNb clauses to contain arbitrary
numbers of positive or negative free literals. We then write (u→ w : α) for an
edge from u to w labeled with a propositional formula α , and we encode it as
∃u∃w (u→ w)∨α ≈ ∃u∃w ¬u∨w∨α , which can be written as one or more
∃HORNb clauses (depending on whether α contains conjunctions).

We call the resulting graphs with this labeling scheme for edges and vertices
propositionally-labeled series-parallel graphs (PS-graphs). In order to ensure
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the uniqueness of the auxiliary variables, we must supplement the inductive def-
inition of ordinary (unlabeled) series-parallel graphs with additional restrictions
on the labels. In the following definition, vars(E) := {vars(α) | (u→ v : α)∈E}
is the set of variables in the labels of an edge set E.

Definition 3.8.4. (PS-graph)

1. Let V = {x,y} be a set of nodes, and let E = {(x→ y : α)} be a single
edge from x to y labeled with a propositional formula α (x,y 6∈ vars(α)).
Then G = (V,E) is a PS-graph.

2. Let G1 = (V1,E1) and G2 = (V2,E2) be PS-graphs that share the same
source x and sink y, with V1∩V2 = {x,y} and vars(E1∪E2)∩(V1∪V2)= /0.
Then G = (V1∪V2,E1∪E2) is a PS-graph.

3. Let G1 = (V1,E1) and G2 = (V2,E2) be PS-graphs, such that z is the sink
of G1 and simultaneously the source of G2, and let V1 ∩V2 = {z} and
vars(E1∪E2)∩ (V1∪V2) = /0.
Then G = (V1∪V2,E1∪E2) is a PS-graph.

4. Only graphs given by the above rules are PS-graphs.

An example of a well-formed PS-graph is shown in Figure 3.6.

yz1

¬d

z2¬c

d

e

x

¬a

b

Figure 3.6.: Example of a PS-graph

The semantics of PS-graphs is given implicitly by associating with every PS-
graph G a propositional formula ΦG.

Definition 3.8.5. (PS-graph Semantics)
Let G = (V,E) be a PS-graph with source x, sink y and inner nodes z = z1, ...,zt .
Then we associate with G the following formula:

ΦG = ∃x∃y∃z1...∃zt x∧¬y∧
∧

(u→w:α)∈E

((u→ w)∨α)
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As mentioned earlier, ΦG contains a conjunctive term (u→w)∨α for every edge
(u→ w : α), and two additional unit clauses represent source and sink. If every
label α is a literal or a disjunction of literals, we have ΦG ∈ ∃HORNb. If some
labels α are more complex and also contain conjunctions, ΦG can be rewritten
into a ∃HORNb formula. A close look at ΦG reveals that there are only at most
two bound literals per clause, which means the class ∃2-HORNb ⊆ ∃HORNb is
actually sufficient for this application.

For the graph in Figure 3.6, we obtain the following associated ∃2-HORNb for-
mula:

ΦG = ∃x∃y∃z1∃z2 x∧¬y∧ (¬x∨ z1∨¬a)∧ (¬x∨ z1∨b)∧ (¬z1∨ y∨¬d)

∧(¬z1∨ z2∨¬c)∧ (¬z2∨ y∨d)∧ (¬z2∨ y∨ e)

≈ ∃z1∃z2 (z1∨¬a)∧ (z1∨b)∧ (¬z1∨¬d)∧ (¬z1∨ z2∨¬c)

∧(¬z2∨d)∧ (¬z2∨ e)

Interestingly, the semantics definition above coincides with two different intu-
itive interpretations of PS-graphs. The first one considers all possible paths from
the source to the sink and takes the disjunction of labels on such a path.

Theorem 3.8.6. (Path Semantics of PS-graphs)
Let G = (V,E) be a PS-graph with source x and sink y, and let ΦG be the asso-
ciated formula. Then

ΦG ≈
∧

p path from x to y

 ∨
(u→w:α)∈p

α

 .

Proof:
Let p = (x→ z1 : α1),(z1→ z2 : α2), ...,(zt−1→ zt : αt),(zt→ y : αt+1) be a path
going from the source x to the sink y. Then ΦG contains the following clauses:
(x),(¬x∨ z1 ∨α1),(¬z1 ∨ z2 ∨α2), . . . ,(¬zt−1 ∨ zt ∨αt),(¬zt ∨ y∨αt+1),(¬y).
Omitting the labels αi leads to an unsatisfiable formula. Therefore, this set of
clauses implies the clause (α1 ∨ . . .∨αt+1). That shows the direction from left
to right. For the other direction, let v be a satisfying truth assignment to the right
hand formula. We can also apply this truth assignment to the free variables of
ΦG and simplify the resulting formula Φ∗G. Suppose Φ∗G is unsatisfiable. Then
there must be a chain (x→ z1),(z1→ z2), . . . ,(zt−1→ zt),(zt → y) in Φ∗G, since
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¬y is the only negative clause. But that chain represents a path from the source
x to the sink y in contradiction to our assumption that the right hand formula is
true.

The second intuitive interpretation of PS-graphs shows that despite the different
labeling and the introduction of quantifiers, the role of the parallel and serial
connections remains the same as in Shannon’s aforementioned series-parallel
circuits [Sha38]: parallel connections in the PS-graph can be considered as AND
operations, and serial connections can be understood as OR operations.

Theorem 3.8.7. (AND-OR Semantics of PS-graphs)
Let G = (V1 ∪V2,E1 ∪E2) be a PS-graph with source x and sink y that is com-
posed of two smaller PS-graphs G1 = (V1,E1) and G2 = (V2,E2) with associated
formulas ΦG1 = ∃φG1 and ΦG2 = ∃φG2 .

1. Let G1 and G2 be arranged in parallel connection where both share the
same source x and sink y, V1∩V2 = {x,y} and vars(E1∪E2)∩(V1∪V2)= /0
as in Definition 3.8.4 (2).
Then ΦG ≈ ∃ φG1 ∧φG2 .

2. Let G1 and G2 be arranged in serial connection where z is the sink of G1
and the source of G2, with V1∩V2 = {z} and vars(E1∪E2)∩(V1∪V2) = /0
as in Definition 3.8.4 (3).
Then ΦG ≈ ∃ φG1 ∨φG2 .

Proof:

1. In ΦG, we can duplicate the unit clauses for source and sink and partition
the edges into two disjoint sets:

ΦG = ∃x∃y∃z x∧¬y∧
∧

(u→w:α)∈E((u→ w)∨α)

≈ ∃x∃y∃z x∧¬y∧
∧

(u→w:α)∈E1
((u→ w)∨α)

∧ x∧¬y∧
∧

(u→w:α)∈E2
((u→ w)∨α)

≈ ∃x∃y∃z φG1 ∧φG2

2. Due to Theorem 3.8.6, we have ΦG ≈
∧

p path from x to y

(∨
(u→w:α)∈p α

)
.

The construction implies that every path from x to y must pass through z.
Consider one single path from x to z. If ΦG is true, one of the labels on
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this path is satisfied, or every path from z to y has one satisfied label. Since
this applies to each path from x to z, we have the following implication:

ΦG⇒

 ∧
p path

from x to z

 ∨
(u→w:α)∈p

α


∨

 ∧
p path

from z to y

 ∨
(u→w:α)∈p

α




The implication in the other direction is obvious: if all paths in one half
of the graph are satisfiable then all paths in the whole graph are satisfi-
able. Thus it follows that both formulas are equivalent. Once again ap-
plying Theorem 3.8.6, the right-hand formula is equivalent to ΦG1 ∨ΦG2 .
The claim follows after moving all quantifiers to the front (notice that
(∃v φG1)∨ (∃v φG2)≈ ∃v φG1 ∨φG2 ).

This theorem covers cases (2) and (3) of the inductive definition of PS-graphs.
For case (1) of Definition 3.8.4, it is easy to see that a graph with only one edge
(x→ y : α) simply encodes α , because ΦG = ∃x∃y x∧¬y∧ (¬x∨ y∨α)≈ α .

3.8.3. 3-CNF Transformation by PS-Graphs

We have seen that ∃HORNb or ∃2-HORNb formulas are a natural way to encode
special kinds of graphs that are labeled with propositional literals or formulas,
such as Boolean circuits or the new class of PS-graphs. As mentioned before,
this can be used for CNF transformation: for an input formula ψ in NNF, we
construct a circuit C = circ(ψ) or a PS-graph G = ps(ψ) that represents ψ .
Then the associated encodings ΦC ∈ ∃HORNb or ΦG ∈ ∃2-HORNb are equiva-
lent to ψ , and their matrices φC or φG are in CNF. We can in fact immediately
obtain 3-CNF, which is often easier for existing solvers that seem to have more
difficulties when the average clause length increases. The Tseitin procedure, on
the other hand, must be extended by an additional processing step when 3-CNF
is desired.

It is well known how to represent a propositional formula as a circuit, but we
have not yet explained the construction of a PS-graph G for a formula ψ . Our
goal is to build a graph in which all edge labels α are just literals, so that all
clauses ¬u∨w∨ α in ΦG are in 3-CNF. It turns out that Theorem 3.8.7 is
not only useful for interpreting a PS-graph, but it can also help us build such a
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graph, because it establishes a correspondence between the propositional oper-
ators AND and OR and the structure of the graph. The idea of our top-down
approach is as follows: we start with one single edge that is labeled with the
whole formula ψ . Depending on whether ψ is a conjunction or a disjunction of
subformulas α1 and α2, we then split this edge into two parallel or serial edges
labeled with α1 and α2. The process continues on the newly created edges un-
til all labels are literals. From G, we can then extract the resulting existentially
quantified 3-CNF formula ΦG. Listing 3.2 provides the complete transformation
procedure.

Listing 3.2: The PS-Transform algorithm

Input propositional formula ψ in NNF;

Initialize G := (V,E) = ({x,y},{(x→ y : ψ)})
// Graph with new nodes x and y and one edge labeled with ψ

while (G has an edge (u→ w : α) with a non−literal formula α) {
if (α = α1 ∧α2)

E = E \{(u→ w : α)}∪{u→ w : α1, u→ w : α2}
else if (α = α1 ∨α2)

E = E \{(u→ w : α)}∪{u→ zi : α1, zi→ w : α2}
for a new variable zi;

}

ΦG = ∃x∃y∃z1...∃zt x∧¬y∧
∧
(u→w:α)∈E (¬u∨w∨α);

Output PS−graph G with associated 3−CNF formula ΦG ≈ ψ.

Consider the example ψ = ¬a∧ ((b∧¬c)∨ (d∧ e)). Figure 3.7 shows the con-
struction of G, and we obtain the following associated formula:

ΦG = ∃x∃y∃z x∧¬y∧ (¬x∨ y∨¬a)∧ (¬x∨ z∨b)∧ (¬x∨ z∨¬c)

∧(¬z∨ y∨d)∧ (¬z∨ y∨ e)

The unit clauses for source and sink can always be propagated. Then our exam-
ple requires only one helper variable:

ΦG = ∃z ¬a∧ (z∨b)∧ (z∨¬c)∧ (¬z∨d)∧ (¬z∨ e)

On the other hand, the Tseitin procedure needs two quantified variables to deal
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with this example:

ψ ≈ ∃x ¬a∧ (x∨ (d∧ e))∧ (¬x∨b)∧ (¬x∨¬c)

≈ ∃x∃y ¬a∧ (x∨ y)∧ (¬x∨b)∧ (¬x∨¬c)∧ (¬y∨d)∧ (¬y∨ e)

yx

¬a

zb∧¬c d∧e

yx

¬a

z
¬c

b d

e

yx

¬a

(b∧¬c) ∨ (d∧e)

yx
¬a ∧ ((b∧¬c) ∨ (d∧e))

1.

2.

3.

4.

Figure 3.7.: Construction of a PS-graph for ψ = ¬a∧ ((b∧¬c)∨ (d∧ e))

Theorem 3.8.8. Let ψ be a propositional formula in NNF which is mapped by
the algorithm PS-Transform to the graph G = ps(ψ) with associated formula
ΦG. Then we have ψ ≈ΦG and |ΦG|= 3 |ψ|+2.

Proof:
The correctness of PS-Transform, that means ψ ≈ ΦG, follows directly from
Theorem 3.8.7 and the subsequent remark about single-edge graphs.
To verify that the associated formula ΦG has linear length, notice that the number
of edges in G equals the number of occurrences of literals in the input formula
ψ , which is commonly defined to be the length of ψ . Moreover, ΦG has one
3-clause for each edge in G, plus two unit clauses for source and sink.

Corollary 3.8.9. PROP≤poly−time ∃2-HORNb.

The algorithm can be modified to produce CNF formulas with arbitrary clause
length by labeling edges not only with literals, but also with disjunctions of
literals. That means we only have to split edges (u→ w : α) if α is neither
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a literal nor a disjunction of literals. Or from a bottom-up viewpoint, we can
merge two single edges in a serial connection, so that G has no inner nodes for
which both indegree and outdegree are 1. With longer clauses, less additional
existentially quantified variables are needed: one for each disjunction in the
formula tree that has a conjunction as child. This is less than or equal to the
number of additional variables that the Tseitin algorithm needs (one for each
conjunction that is child of a disjunction). The circuit-based approach that was
presented in the introduction clearly needs more additional variables (one for
edge in the circuit).

Another advantage of PS-Transform is that it produces ∃2-HORNb formulas,
while the other approaches need ∃HORNb with three bound literals per clause.
The Tseitin procedure may actually produce clauses with even more bound lit-
erals which must be broken down into clauses with three bound literals in an
extra post-processing step that requires additional helper variables. Moreover,
PS-Transform guarantees every clause in ΦG to have at least one literal of the
original formula. That should later provide more guidance to solvers or proof
systems and avoid extensive reasoning only on helper variables.

Due to the direct correspondence between the propositional connectives and the
graph layout, the graph G = ps(ψ) quite naturally represents the structure of the
input formula ψ . This is shown by the interesting observation that G encodes
both the linear and the exponential CNF transformation of ψ . By Theorem 3.8.6,
ψ is equivalent to a CNF that is obtained by adding for every possible path from
the source to the sink a clause which contains the disjunction of labels on such a
path. This CNF is the result of the application of the distributivity law to ψ .

Consider again the example from Figure 3.7. Here, we have the possible paths
p1 = (x→ y : ¬a), p2 = (x→ z : b),(z→ y : d), p3 = (x→ z : b),(z→ y : e),
p4 = (x→ z : ¬c),(z→ y : d) and p5 = (x→ z : ¬c),(z→ y : e). Then the
resulting formula is ¬a∧ (b∨ d)∧ (b∨ e)∧ (¬c∨ d)∧ (¬c∨ e). We can also
observe that if a graph G = ps(ψ) has t possible paths from the source to the
sink then ψ is equivalent to a CNF of at most t clauses.

3.8.4. QHORNb Complexity Results

We have seen in the previous sections that the class ∃HORNb is surprisingly
powerful. In particular, it can compactly encode circuits with arbitrary fan-out,
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which are widely assumed to be exponentially more powerful than circuits with
fan-out 1 or, equivalently, propositional logic. We now want to discuss whether
we can further increase expressive power by also allowing universal variables.

In the proof of Theorem 3.6.4, we have used arbitrary fixed assignments to the
free variables in the QHORN∗ formula. A close look at the proof reveals that
we have not made any assumptions on the structure of the free variables. In
particular, we have not required that the free literals have the Horn property.
The proof works exactly the same if we have more than one positive free literal
per clause. We can therefore generalize Theorem 3.6.4 and Corollary 3.6.5 from
QHORN∗ to QHORNb formulas.

Theorem 3.8.10. (QHORNb to ∃HORNb Transformation)
For any formula Φ∈QHORNb, there exists an equivalent formula Φ′ ∈∃HORNb

without universal quantifiers. The length of Φ′ and the time to compute Φ′ from
given Φ are both bounded by |∀| · |Φ|, where |∀| is the number of universal quan-
tifiers in Φ, and |Φ| is the length of Φ.

It follows that QHORNb =poly−time ∃HORNb.

With PROP≤poly−time ∃HORNb by one of the transformations from the preced-
ing sections and the observation that a ∃HORNb formula is satisfiable if and
only if its propositional matrix is satisfiable, it is easy to see that the satisfia-
bility problem for ∃HORNb is NP-complete. Because of the previous theorem,
the satisfiability problem for QHORNb is also in NP, and its NP-completeness
follows immediately.

Theorem 3.8.11. The satisfiability problem for the formula class QHORNb is
NP-complete.

What this means is that we can take arbitrary propositional CNF formulas, for
which the satisfiability problem is NP-complete, and augment them with exis-
tentially and/or universally quantified variables. As long as those quantified vari-
ables constitute a QHORN formula, the satisfiability problem is not substantially
more difficult and remains in NP. In this scenario, we receive essentially for free
the benefits of introducing quantified variables, such as more compact formula
representations (demonstrated by the introductory example at the beginning of
Section 3.8) or more natural modeling.
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We can also augment non-CNF formulas with quantified variables. In that case,
we have to be careful to make sure that after the transformation into QCNF∗,
the quantified variables satisfy the Horn property. Furthermore, Horn-renamable
formulas can be detected in linear time [Asp80, Héb94], and renaming quantified
variables preserves equivalence. Thus, ren-QHORNb =poly−time QHORNb, that
means it is also sufficient if the quantified variables are only Horn-renamable.

This positive result is, of course, from a complexity-theoretic viewpoint. Con-
cerning real applications, our results from Chapter 5 indicate that adding large
numbers of quantified variables only to achieve the most compact formula rep-
resentation may in fact cause a considerable overhead and lead to longer solving
times. On the other hand, adding some carefully selected quantified variables is
indeed very beneficial when it leads to a significant reduction in formula size.
It is therefore important to find the right balance between the number of quanti-
fied variables and the desired level of formula compression. The benefit of more
natural modeling through quantified formulas is apparently immeasurable, but
should not be ignored either.

Another point to consider is the following: while we have shown that we can add
a QHORN component to arbitrary propositional formulas without an increase in
complexity, there may in fact be a penalty for augmenting certain subclasses
of propositional formulas with QHORN. Consider propositional Horn formulas,
which can be solved in linear time. Then the combination of HORN and QHORN
is NP-complete. This is not caused by the quantifiers, but due to the fact that
solving composites of two propositional Horn formulas is already NP-complete.

Lemma 3.8.12. Let C be the class of CNF formulas φ =C1∧ ...∧Cq, which are
composed of two variable-disjoint propositional Horn formulas ψ1,ψ2 ∈HORN,
ψ1 = α1∧ ...∧αr and ψ2 = β1∧ ...∧βr′ , such that for every clause Ck in φ we
have Ck = αi or Ck = β j or Ck = αi∨β j for some i, j.
Then the satisfiability problem for C is NP-complete.

Proof:
C satisfiability is obviously in NP, because C ⊆ PROP. NP-hardness can be
shown with a reduction from 3-SAT. Let φ ∈ 3-CNF with φ = C1 ∧ ...∧Cq.
Then we can determine the satisfiability of φ through constructing φ ′ ∈ C with
φ ′≈SAT φ by replacing every clause Ci = (Li,1∨Li,2∨Li,3) in φ with new clauses
C′i,1 = (ai∨Li,1), C′i,2 = (bi∨Li,2) and C′i,3 = (¬ai∨¬bi∨Li,3) where ai and bi are
new variables which do not occur in φ . We can easily verify that for every given
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value of Li,1, ...,Li,3, it holds that Ci is true ⇔ C′i,1 ∧C′i,2 ∧C′i,3 is satisfiable.
It follows that for every truth value assignment to the variables in φ , φ is true
if and only if φ ′ is satisfiable, and therefore φ ≈SAT φ ′. Moreover, φ ′ ∈ C ,
because φ ′ can be written as the composite (analogous to the definition of C ) of
ψ1 =

∧
i=1..q(Li,1 ∧Li,2 ∧Li,3) and ψ2 = ∧i=1..q(ai ∧ bi ∧ (¬ai ∨¬bi)). Clearly,

ψ1,ψ2 ∈ HORN.

3.9. Summary

This chapter has demonstrated that the syntactic restriction of allowing at most
one positive literal per clause influences the semantics of quantified Horn formu-
las with an interesting effect on the behavior of the quantifiers. We have shown
that only cases where at most one of the universally quantified variables is false
are relevant for the choice of the existential variables. This has allowed us to
provide a detailed characterization of satisfiability models for QHORN formulas
by focusing only on the relevant parts of the model. Accordingly, the concept
of R∀-partial satisfiability models has been introduced, and it has been shown
that for QHORN formulas, the partial model can always be extended to a total
satisfiability model. We have also investigated models for QHORN∗ formulas
with free variables and have proved that such equivalence models are monotone.

Based on these results, we have been able to show that

• any formula Φ ∈ QHORN∗ of length |Φ| with free variables, |∀| universal
quantifiers and an arbitrary number of existential quantifiers can be trans-
formed into an equivalent quantified Horn formula of length O(|∀| · |Φ|)
which contains only existential quantifiers.
It follows that QHORN∗ =poly−time ∃HORN∗.

• QHORN∗-SAT can be solved in time O(|∀| · |Φ|) by transforming the input
formula into a satisfiability-equivalent propositional formula.

• satisfiability models for QHORN formulas can also be computed in time
O(|∀| · |Φ|).

The above main result that universally quantified Horn formulas have the same
expressiveness as purely existential Horn has been extended without much ad-
ditional effort to QHORNb formulas with an arbitrary number of positive free
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literals per clause. This demonstrates that our approach is quite powerful and
naturally captures the structure of Horn formulas.

We have also considered applications of QHORNb formulas, in particular the
transformation of propositional formulas into short equivalent CNF formulas by
annotating them with quantified variables that obey the Horn property. Using
this technique, we have developed a new such transformation that preserves the
structure of the input formula in a very natural way. It needs only at most two
bound literals per clause, which shows PROP ≤poly−time ∃2-HORNb. In addi-
tion, the underlying graph representation allows a comprehensible visualization
of the algorithm and illustrates a close relationship between exponential CNF
transformation by distributing terms and linear CNF transformation with auxil-
iary variables.

In the following chapter, we will consider more powerful quantifiers which can
explicitly indicate variable dependencies. We will see that the Horn property is
apparently such a strong restriction that our main observation about the limited
impact of universal quantifiers still holds for quantifiers with explicit dependen-
cies.
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Dependency quantified Boolean formulas (DQBF or DQBF
∗

if free variables are
allowed) extend quantified Boolean formulas with Henkin-style partially ordered
quantifiers. This allows more succinct and more natural formula representations
than ordinary QBF∗ or even non-prenex QBF∗, which we demonstrate with a
new modeling approach for the well-known bounded reachability problem for
directed graphs. We compare our encoding with existing QBF∗ representations
and show that it has a shorter matrix and requires less quantified variables: for a
graph with 2n vertices, we need at most O(n) variables, in contrast to O(n2) (but
in an unbounded number of quantifier blocks) or even O(2n) in QBF∗.

In general, DQBF∗ satisfiability is NEXPTIME-complete. Accordingly, we de-
fine easier subclasses through restrictions on the structure of the prefix or the
clauses. We show that formulas with dependencies of bounded or at most log-
arithmic size (DkQBF∗ or DlogQBF∗) have ΣP

2 -complete satisfiability problems.
In addition, formulas with polynomially orderable dependencies (DpoQBF∗) are
considered. They are shown to be a PSPACE-complete generalization of QBF∗.
We also investigate dependency quantified Horn formulas (DQHORN∗) and lift
from ordinary quantified Horn the characteristic property that the behavior of the
existential quantifiers depends only on the cases where at most one of the uni-
versal variables is zero. This allows us to solve DQHORN∗ formulas Φ with |∀|
universal quantifiers in time O(|∀|· |Φ|), which equals the best known algorithms
for the QHORN∗ satisfiability problem.

An important tool in our investigations is universal quantifier expansion. We
prove its correctness for DQBF∗ and observe that it can eliminate dependencies
and transform DQBF∗ formulas into QBF∗. While this may cause exponential
formula growth in general, the process can be shown to remain polynomial for
DpoQBF∗ formulas. A quadratic bound can be established for DQHORN∗ for-
mulas and their generalization DQHORNb with an arbitrary number of positive
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free literals per clause. It follows that DQHORNb satisfiability is NP-complete
and that DQHORNb =poly−time QHORNb =poly−time ∃HORNb.

This chapter extends preliminary results on DQHORN∗ which have been pub-
lished in [BKB06].

4.1. Motivation

We have seen that quantification is a powerful tool to provide short represen-
tations for propositional formulas, and also more natural encodings for many
problems that already have an inherent forall/exists semantics. There is, how-
ever, one clear limitation in the concept of quantification which we have encoun-
tered so far: in QBF∗, it is not possible to explicitly state on which universals an
existential variable depends. This is in particular evident for formulas in prenex
form where all quantifiers appear at the beginning and each existential variable
depends on all preceding universals.

4.1.1. Variable Dependencies and Formula Structure

It has already been pointed out that quantified Boolean formulas are usually as-
sumed by definition to be in prenex form, and that is also the input format gener-
ally required by QBF∗ solvers. Prenex formulas can be handled more efficiently
because of their clear and simple concept of variable scopes and dependencies,
and operations like Q-resolution become difficult to perform otherwise. But this
is traded for a loss of structural information. Consider a non-prenex formula of
the form

Φ = (∀x φ(x))∧ (∃y ψ(y))

which consists of two variable-disjoint subformulas. Then there are two equiva-
lent prenex representations:

Φpre−∀∃ = ∀x∃y φ(x)∧ψ(y)

Φpre−∃∀ = ∃y∀x φ(x)∧ψ(y)

From a model-centered viewpoint, the first representation is clearly disadvanta-
geous, because y now seems to depend on x, which means a model-based solver
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will expect a unary function and only later discover that a Boolean constant is
actually sufficient. Similarly, the second prenex representation might cause a
DPLL-based solver to recursively branch on x a second time if the first attempt
to assign y is not successful. So in both cases, we lose some of the structural
information inherent in the original formula, and that may lead to a larger search
space. Recent experimental studies [EST+04, GNT07] have shown that this
problem may have a considerable impact on the performance of QBF∗ solvers.

How can we overcome the information loss from flattening quantifier hierarchies
into prenex form? An obvious solution is to extend QBF∗ solvers to directly
handle non-prenex formulas [GNT07]. However, non-prenex formulas may have
complex nested local quantification scopes which implicitly define the variable
dependencies. Accordingly, non-prenex formulas are often difficult to read, and
it can be challenging to write correct and concise non-prenex QBF∗ encodings
of problems. To illustrate the subtleties of non-prenex formulas, consider the
following example:

Ψ = (∀a φ1∧ (∀b (∃c φ2)∧φ3)∧ (∃d φ4)∧φ5)∧ (∃e φ6)∧φ7

On which universals do c, d and e depend?

Another solution which retains the notational simplicity of prenex form is to re-
cover lost information from the formula structure during the solving process. As
discussed in more detail in Chapter 5, a solver can analyze the local connectivity
of variables in common clauses and infer that variables which occur in disjoint
subformulas do not depend on each other.

Both approaches, structure analysis and non-prenex formulas, require that the
variable dependencies correspond to the formula structure. This requirement
excludes a formula of the form

Γ = φ(x1,x2,y1)∧ψ(x1,x3,y2)∧ω(x1,x2,x3,y1,y2)

with universals x1, ...,x3 and existentials y1,y2 where y1 depends on x1 and x2,
but not x3, and y2 depends on x1 and x3, but not x2. So we have a tree-like
quantifier hierarchy with x1 at the root and y1 and y2 as two separate leaves.
If there was no subformula ω , we could easily provide a suitable non-prenex
formula:

Γ6ω = ∀x1 (∀x2∃y1 φ(x1,x2,y1))∧ (∀x3∃y2 ψ(x1,x3,y2))
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But if ω is present, the scopes of y1 and y2 are not disjoint, which opposes such
a non-prenex representation. Right now, it may not yet be clear why it is useful
to have expressions like ω which combine existentials from disjoint subformu-
las. We will later investigate how to use this feature for novel encodings. At
this point, we just emphasize that the example represents a class of formulas
which are unlikely to have short non-prenex QBF∗ representations. This is dif-
ferent from the earlier examples in this section, where the information loss from
prenexing has only affected the solving performance, but we have still been able
to provide concise non-prenex and prenex QBF∗ encodings.

We are therefore going to consider an extension of QBF∗ with more expressive
quantifiers that can explicitly indicate variable dependencies. This does not only
provide us with a clear and intuitive notation, but exceeds the expressive power
of prenex and non-prenex QBF∗ and allows new modeling approaches where
variable dependencies may be independent of the formula structure.

4.1.2. Dependency Quantifiers

Partially-ordered quantifiers with explicit variable dependencies have initially
been proposed by Henkin [Hen61] for first-order predicate logic. Such branch-
ing quantifiers, or simply Henkin quantifiers, are typically written as a two-
dimensional matrix where each row contains an existentially quantified variable
that is preceded by exactly those universals on which it depends. It has been
shown in [Wal70] that first-order formulas with Henkin quantifiers contain the
class of finite existentially quantified second-order logic. That means the addi-
tion of Henkin quantifiers can indeed lead to a clear increase in expressiveness.
We want to achieve a similar enhancement with quantified Boolean formulas. If
we adopt the notion of Henkin quantifiers to QBF, we can correctly encode the
previous example as follows:(

∀x1∀x2∃y1

∀x1∀x3∃y2

)
φ(x1,x2,y1)∧ψ(x1,x3,y2)∧ω(x1,x2,x3,y1,y2)

The informal semantics is that y1 depends on x1 and x2, and y2 depends on x1 and
x3. Since the only relevant information is which universal quantifiers precede
which existential quantifier, we can use a (typographically) simpler notation as
follows:

∀x1∀x2∃y1(x1,x2)∀x3∃y2(x1,x3) φ(x1,x2,y1)∧ψ(x1,x3,y2)∧ω(x1,x2,x3,y1,y2)
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For each existential quantifier, we indicate the universal variables on which it
depends, and we call such a quantifier a dependency quantifier. Without loss of
information, we can assume that the prefix is always in the form ∀∗∃∗:

∀x1∀x2∀x3∃y1(x1,x2)∃y2(x1,x3) φ(x1,x2,y1)∧ψ(x1,x3,y2)∧ω(x1,x2,x3,y1,y2)

This notation has been introduced for quantified Boolean formulas by Peterson,
Azhar and Reif in [PRA01] (a preliminary version appeared in [PR79]) under the
name Dependency Quantified Boolean Formulas (DQBF). It is no coincidence
that the syntax of the existential dependency quantifiers resembles the notation
of functions, because in both predicate logic and DQBF, dependency quanti-
fied existential variables can be associated with (Skolem) functions. In the case
of DQBF formulas, we are going to map the dependency quantified existential
variables to satisfiability model functions that take the dominating universals as
parameters.

4.2. Research Goals and Related Work

Partially-ordered quantification has been around for quite some time, but has
not been widely used in combination with quantified Boolean formulas. This is
probably due to the fact that DQBF satisfiability is NEXPTIME-complete, which
has been shown by Peterson, Reif and Azhar [PRA01] immediately upon intro-
ducing DQBF. Assuming that NEXPTIME 6= PSPACE, NEXPTIME is a jump
in complexity compared to QBF satisfiability which is PSPACE-complete. In
analogy to QBF∗, we also define dependency quantified Boolean formulas with
free variables (DQBF∗). While these are not considered in [PRA01], it is easy
to see that the NEXPTIME-completeness also holds for DQBF∗ satisfiability.

We first want to investigate which particular feature of dependency quantifi-
cation is responsible for this increase in complexity, and how to use it to ob-
tain more concise encodings of particular problems. The introduction in Sec-
tion 4.1.1 suggests that the main advantage of DQBF∗ over QBF∗ in terms of
expressiveness is the ability to have variable dependencies which are indepen-
dent of the formula structure. That means having existential variables which
depend on distinct universals, but still occur in a common subformula. How
can we make use of this capability? [BFL91] and [PRA01] have shown that

89



4. Dependency Quantified Boolean Formulas

the class NEXPTIME can be characterized by multi-prover interactive proof sys-
tems [BOGKW88] or games in which two non-communicating provers or play-
ers perform independent computations in order to convince or win against a third
entity. Here, the emphasis is on the independence of the two provers or players
(if they did cooperate, they could be simulated by one single instance), and that
independence can be guaranteed in DQBF∗ by encoding them as two sets of
existential variables with disjoint dependencies.

We demonstrate that such multi-prover approaches permit better reuse of quan-
tified variables by allowing multiple assignments to the same variable without
loss of earlier values. This pattern is then applied to develop a compact DQBF∗

encoding of the well-known bounded reachability problem for directed graphs
[Pap94] which is fundamental to bounded model checking [BCCZ99, CBRZ01].
Existing QBF∗ encodings introduce quantified variables to avoid multiple copies
of the graph transition relation. The new encoding that we present can also
accomplish this, but it needs less equality checks in the formula matrix, and
it requires less quantified variables and/or less quantifier alternations than the
QBF∗ representations: for a graph with 2n vertices, e.g. the state space of n
binary variables, we only need O(n) quantified variables with a simple ∀∗∃∗
prefix, compared to existing QBF∗ encodings with O(n2) variables in a prefix
with O(n) quantifier alternations [Pap94, DHK05] or O(2n) variables with ∃∗∀∗
prefix [DHK05].

Faced with the NEXPTIME-completeness of DQBF∗ satisfiability, an important
question is whether there are subclasses of DQBF∗ that are substantially eas-
ier, yet still powerful enough to benefit from dependency quantifiers and to be
interesting for applications. Might it even be possible to add dependency quan-
tification to a non-trivial subclass of QBF∗ without seeing a hefty increase in
complexity? In QBF∗, the two most prominent approaches to obtain easier sub-
classes are the following:

• restrictions on the structure of the quantifier prefix

• constraints on the clause structure

In this chapter, we demonstrate that interesting DQBF∗ subclasses with lower
complexity can be obtained by both kinds of restrictions. For the prefix struc-
ture, suitable constraints are not immediately obvious: limiting the number of
quantifier alternations as it is done in QBF∗ is pointless with dependency quan-
tifiers, since they can always be written with a simple ∀∗∃∗ prefix without any
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loss in expressiveness. We suggest to consider the structure of the dependency
lists instead. An obvious constraint on the dependencies is to limit their sizes,
that is, the maximum number of universals on which each existential variable
may depend. We show that formulas with dependencies of bounded or at most
logarithmic sizes (DkQBF∗ or DlogQBF∗) have Σ

p
2 -complete satisfiability prob-

lems. When we consider QBF∗ formulas as an embedded subset of DQBF∗, we
obtain DQBF∗ formulas with dependencies that are pairwise included in each
other. We show that this class of formulas can be generalized to formulas with
dependencies that are not totally ordered, but can be ordered within polynomial
space, so that the satisfiability problem remains PSPACE-complete.

A main result in this context is that we are able to show that Horn formulas
remain polynomially solvable even with dependency quantifiers. This makes
DQHORN∗ the first non-trivial class of formulas known to be tractable in com-
bination with dependency quantification. The Horn property appears to be such
a strong restriction that the observation from Chapter 3 still holds: a linear num-
ber of assignments to the universal variables completely determines the behavior
of the existentials, even if they are dependency quantified.

To our knowledge, there are no DQBF∗ solvers available yet. We suggest that
an intermediate step to this ultimate goal might be a system which externally
accepts dependency quantified formulas, but internally preprocesses them into
QBF∗ and feeds them to an encapsulated QBF∗ engine. That would give users
the benefit of a clearer notation with explicit variable dependencies, which re-
moves the need for non-prenex formulas and allows for more natural modeling
of problems, while the system itself could be based on existing QBF∗ techniques.
We demonstrate that the translation to QBF∗ can be accomplished with the uni-
versal quantifier expansion method that has already played a prominent role in
the previous chapter. For DpoQBF∗ and DQHORN∗ as well as its generalization
DQHORNb with arbitrarily many positive free literals per clause, we show that
this transformation requires only polynomial time. Besides the conversion of
DQBF∗ into QBF∗, universal expansion might also be helpful in building a full
DQBF∗ solver, considering that expansion is one of the most successful solving
techniques in the QBF∗ area.
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4.3. Fundamentals

Before we can investigate in detail the questions raised in the previous section,
we need a more thorough definition of syntax and semantics of DQBF formulas
that goes beyond the brief informal introduction in [PRA01]. In addition, we
introduce DQBF∗ formulas with free variables and explain how key concepts
like models can be lifted from QBF and QBF∗.

4.3.1. DQBF Syntax and Semantics

We first introduce a notation which allows us to quickly enumerate the depen-
dencies of a given existential variable yi in a ∀∗∃∗ prefix with n universal quanti-
fiers and m dependency quantified existentials. We are using indices di,1, ...,di,ni

which point to the ni universals on which yi depends. For example, given the
existential quantifier ∃y4(x3,x5), we say that y4 depends on xd4,1 and xd4,2 with
d4,1 = 3 and d4,2 = 5. To avoid confusion, we require 1 ≤ di, j ≤ n, so that
the dependency lists only reference universals which have been introduced by a
preceding universal quantifier. Moreover, we assume that di, j 6= di,k for j 6= k,
because it makes no sense to have duplicate entries of a universal variable in
the same dependency list. We also allow empty dependencies with ni = 0, i.e.
existential quantifiers ∃yi() that do not depend on any universals.

Definition 4.3.1. (Dependency Quantified Boolean Formula)
A dependency quantified Boolean formula Φ ∈DQBF with universal variables
x = (x1, ...,xn) and existential variables y = (y1, ...,ym) (n,m ≥ 0) is a formula
of the form

Φ = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y)

where the matrix φ is a propositional formula over the quantified variables.

We often use a shorter notation Φ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y) where
we abbreviate xdi :=(xdi,1 , ...,xdi,ni

). Alternatively, we also treat dependency lists
xdi as sets and apply the basic set operations and relations on them. That allows
us to write expressions like x1 ∈ xdi or xdi ⊆ xd j . Furthermore, we sometimes
use the shorthand ∃yi,y j(xd) := ∃yi(xd)∃y j(xd) in order to combine existential
variables with the same dependencies.
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The definition requires that DQBF formulas are in prenex form. This avoids
having negations of existential dependency quantifiers, which would otherwise
be problematic, because the quantifier inversion rule ¬(∃y φ) ≈ ∀y ¬φ which
is well known for QBF does not work in general for existential dependency
quantifiers. Consider the following simple example:

Ψ = ∀x1∀x2∃y(x1) (x2∨ y)∧ (¬x2∨¬y)

Then Ψ is clearly false, because y cannot adapt to different values of x2. But

¬Ψ = ¬(∀x1∀x2∃y(x1) (x2∨ y)∧ (¬x2∨¬y)) 6≈ ∃x1∃x2∀y (¬x2∧¬y)∨ (x2∧y)

because the formula on the right hand side is obviously false as well. The prob-
lem is that the dual ¬DQ φ of a dependency quantifier DQ can usually not be
expressed as an ordinary non-negated dependency quantifier. The issue is the
same for first-order logic with Henkin quantifiers and is discussed in more detail
in [BG86]. But since dependency quantifiers are expressive enough to simu-
late the local quantifier scopes in a non-prenex formula, there is not much sense
in allowing hard-to-read non-prenex formulas anyway. All the information con-
tained in the nesting of quantifier scopes can be encoded explicitly in the variable
dependencies. This also allows us to assume without loss of generality that the
prefix is always in the form ∀∗∃∗ as in the definition above.

So far, we have discussed dependency quantifiers with an informal understand-
ing of their semantics. Formally, we define the semantics of DQBF over model
functions. Satisfiability models for DQBF formulas are a straightforward gener-
alization of the QBF case (Definition 2.7.1). In DQBF, each model function fyi

contains exactly those universals xdi,1 , ...,xdi,ni
on which yi depends.

Definition 4.3.2. (DQBF Satisfiability Model)
For Φ ∈ DQBF with existential variables y = (y1, ...,ym), let M = ( fy1 , ..., fym)
be a mapping which associates with each existential variable yi a propositional
formula fyi over the universal variables xdi,1 , ...,xdi,ni

on which yi depends. Then
M is a satisfiability model for Φ if the purely universally quantified QBF formula
Φ[y/M] :=Φ[y1/ fy1 , ...,ym/ fym ], where simultaneously each existential variable
yi is replaced by its corresponding formula fyi and the existential quantifiers are
dropped from the prefix, is true.

Definition 4.3.3. (DQBF Semantics)
A DQBF formula is true if and only if it has a satisfiability model.
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For QBF, the last definition is actually a theorem, because its semantics is usu-
ally defined inductively without referring to model functions. That is not feasible
for DQBF, because quantifiers in DQBF prefixes cannot be eliminated from out-
ermost to innermost by considering only one quantifier at a time. Instead, the
dependencies require considering cross-references between quantifiers, which is
problematic for an inductive definition.

4.3.2. The Class DQBF∗ with Free Variables

So far, we have only considered closed DQBF formulas. We can also allow free
variables and define the class DQBF∗ as follows:

Definition 4.3.4. (DQBF∗ Syntax, Satisfiability, Equivalence and Entailment)
A dependency quantified Boolean formula Φ(z) ∈ DQBF∗ with free variables
z = (z1, ...,zr) is a formula of the form

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y,z)

with universal variables x = (x1, ...,xn), existential variables y = (y1, ...,ym)
(n,m ≥ 0) and the matrix φ given by a propositional formula over the quan-
tified and the free variables.

A DQBF∗ formula Φ(z) is satisfiable if and only if there exists a truth assignment
τ(z) = (τ(z1), ...,τ(zr)) ∈ {0,1}r to the free variables such that

Φ(τ(z)) = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y,τ(z))

is true.

Two DQBF∗ formulas Ψ1(z1, ...,zr) and Ψ2(z1, ...,zr) are equivalent (Ψ1 ≈Ψ2)
if and only if Ψ1 |= Ψ2 as well as Ψ2 |= Ψ1, where semantic entailment |=
is defined as follows: Ψ1 |= Ψ2 if and only if for all truth value assignments
t(z) = (t(z1), ..., t(zr)) ∈ {0,1}r to the free variables, we have Ψ1(t(z)) = 1 ⇒
Ψ2(t(z)) = 1.

We can see that DQBF∗ satisfiability, equivalence and entailment are analogous
to the corresponding definitions for QBF∗. In fact, we can map any QBF∗ for-
mula to a corresponding DQBF∗ formula with the same matrix and the same
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variables such that the dependency list of each existential variable contains ex-
actly those universal variables that precede the existential in the QBF∗ prefix.
On this embedding of QBF∗ into DQBF∗, basic concepts like satisfiability and
equivalence just coincide with the corresponding QBF∗ definitions.

Notice that in the above definition of DQBF∗ satisfiability, the truth assignment
to the free variables is determined before the values of the existential variables
are chosen. That means an existentially quantified variable yi actually depends
not only on the explicitly indicated universal variables xdi,1 , ..,xdi,ni

, but also on
all free variables - even though these are not (and cannot be) contained in the
dependency list of yi.

It might seem natural to add to the language the ability to also explicitly indicate
on which free variables an existential variable depends, but that would require
substantial modifications to the definition of DQBF∗, so that we would lose the
close similarity to QBF∗, where an existentially quantified variable also depends
on all free variables, regardless of its actual scope. Furthermore, our approach
maintains the very useful property that a DQBF∗ formula can be considered as
a closed DQBF formula when the free variables are fixed with a given truth
assignment.

The discussion from the last paragraph suggests that we should describe an ex-
istential variable in a DQBF∗ formula by a function over the free variables and
over those universals on which it depends. That leads to the following definition
of DQBF∗ equivalence models as a generalization of QBF∗ equivalence models
(Definition 2.7.2):

Definition 4.3.5. (DQBF∗ Equivalence Model)
Let Φ(z) = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y,z) be a DQBF∗ formula. For
propositional formulas fyi over z and over universals xdi = (xdi,1 , ...,xdi,ni

) on
which yi depends, M = ( fy1 , ..., fym) is an equivalence model for Φ(z) if and
only if Φ(z)≈Φ(z)[y/M] = ∀x1...∀xn φ(x1, ...,xn, fy1(z,xd1), ..., fym(z,xdm),z).

4.3.3. DQBF∗ Complexity and Expressiveness

While DQBF∗ formulas are not considered in [PRA01], it is easy to see that
the proof of the NEXPTIME-completeness of DQBF satisfiability can be lifted
to DQBF∗: the NEXPTIME-hardness of DQBF automatically extends to its su-
perclass DQBF∗, so it only remains to verify that DQBF∗ satisfiability is also
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in NEXPTIME. Given Φ ∈ DQBF∗, we first guess a satisfying truth assignment
τ(z) to the free variables and replace all occurrences of free variables zi with the
corresponding truth value τ(zi). For the resulting DQBF formula Φ(τ(z)), we
then guess a satisfiability model M = ( fy1 , ..., fym). Both steps can be accom-
plished in nondeterministic exponential time. Then we only have to verify that
the matrix φ is true for every assignment to the universal variables x when the
free variables are assigned as in τ(z) and the value of each existential variable
y j is looked up in M for the given values of xd j and z. This is clearly possible in
exponential time.

Theorem 4.3.6. The satisfiability problem for DQBF∗ is NEXPTIME-complete.

A DQBF∗ formula can be converted into QBF∗ by eliminating the existential
variables, because a purely universally quantified DQBF∗ formula has no de-
pendencies. Existential variables can be eliminated by replacing them with the
corresponding equivalence model functions: for Φ ∈ DQBF∗ with existential
variables y, we have Φ(z)≈Φ(z)[y/M] ∈ QBF∗ with an equivalence model M.
The following theorem shows that this is always possible, because each DQBF∗

formula has such an equivalence model M.

Theorem 4.3.7. Every DQBF∗ formula Φ(z) has an equivalence model M and
is therefore equivalent to a universally quantified QBF∗ formula Φ(z)[y/M].

Proof:
Let Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1

)...∃ym(xdm,1 , ...,xdm,nm
) φ(x,y,z) be in

DQBF∗ with universal variables x = x1, ...,xn, existentials y = y1, ...,ym and free
variables z = z1, ...,zr. Furthermore, let t(z) = (t(z1), ..., t(zr)) be a truth assign-
ment to the free variables. If the closed formula Φ(t(z)) is true, it has a satisfia-
bility model M(t(z)) = ( f (t(z))y1 , ..., f (t(z))ym ), otherwise let f (t(z))yi (xdi,1 , ...,xdi,ni

) := 0
for i = 1, ...,m. We label the model functions with the corresponding assign-
ment t(z), so that we can assemble them into equivalence model functions for
arbitrary values of z:

fyi(z1, ...,zr,xdi) :=

(
(¬z1∧¬z2∧ ...∧¬zr)→ f (0,...,0)yi (xdi)

)
∧(

(z1∧¬z2∧ ...∧¬zr)→ f (1,0,...,0)yi (xdi)
)
∧

...(
(z1∧ z2∧ ...∧ zr)→ f (1,...,1)yi (xdi)

)
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Then let M = ( fy1 , ..., fym), and for any truth assignment t(z), it follows that if
Φ(t(z)) is true, Φ(t(z))[y/M] is also true, because fyi(t(z),xdi) = f (t(z))yi (xdi)

and M(t(z)) is a satisfiability model. And if Φ(t(z)) is false, it is also false in
the special case Φ(t(z))[y/M] when all existentials are set to 0. It follows that
Φ(z)≈Φ(z)[y/M].

If NEXPTIME 6= PSPACE, there are DQBF∗ formulas Φ(z) for which the re-
sulting formula Φ(z)[y/M] must be exponentially larger, which means M must
have exponential size. If that were not the case, we could guess in nondetermin-
istic polynomial space (NPSPACE = PSPACE) the necessary equivalence model
functions, substitute them into the formula and solve the resulting QBF∗ deter-
ministically in polynomial space.

While dependency quantifiers appear to be a powerful language feature, there
are, however, Boolean functions for which even DQBF∗ cannot provide succinct
representations.

Theorem 4.3.8. There is no polynomial p such that for every Boolean function
f : {z1, ...,zr} → {0,1} there exists a dependency quantified Boolean formula
Φ f ∈ DQBF∗ which has z1, ...,zr as free variables and for which f ≈ Φ f and∣∣Φ f
∣∣≤ p(r).

Proof:
Without loss of generality, we can assume that Φ f is of the following form:

Φ f (z1, ...,zr) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y,z)

A formula of length p(r) contains at most p(r) different variables. We now
consider the different components of the formula:

• ∀∗-part of the prefix: there are at most p(r)n different ∀∗-blocks.

• ∃∗-part of the prefix: we can safely assume that ni = n: if a variable yi
depends on less than n universals, we can pad the list of dependencies
with xdi,1 . Then there are at most (p(r) · p(r)n)m = p(r)(n+1)m different
∃∗-blocks.

• formula matrix: as discussed in [KBL99], there are at most (p(r)+3)4p(r)

different propositional formulas of length p(r).
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With n,m≤ p(r), we can combine the three cases and obtain the following upper
bound for the number of distinct DQBF∗ formulas of length p(r):

p(r)p(r) · p(r)(p(r)+1)·p(r) · (p(r)+3)4p(r) ≤ (p(r)+3)(p(r)+6)p(r)

This is asymptotically smaller than 22r
, the number of distinct Boolean functions

over r variables.

4.4. Modeling Graph Reachability with DQBF∗

In order to demonstrate how modeling can make use of the expressive power
of dependency quantifiers and to further motivate our subsequent investigations
of DQBF∗, we present in this section a DQBF∗ modeling pattern for reusing
space by a multi-player game approach. With this technique, we develop a new
DQBF∗ encoding of the bounded reachability problem for directed graphs and
compare it to existing QBF∗ representations [Pap94, DHK05].

4.4.1. Modeling Pattern: Saving Space with
Multi-Player Games

Sections 1.1 and 2.6 have already shown that universal quantifiers can abbreviate
multiple instantiations of (sub-)formulas. Let us now consider a more complex
QBF∗ example in which the subformulas that we wish to abbreviate also contain
their own existentially quantified variables:

Φ =
(
∃y1,1...∃y1,l ψ(z1,1, ...,z1,k,y1,1...,y1,l)

)
∧
(
∃y2,1...∃y2,l ψ(z2,1, ...,z2,k,y2,1, ...,y2,l)

)
∧ ...

∧
(
∃ym,1...∃ym,l ψ(zm,1, ...,zm,k,ym,1, ...,ym,l)

)
Here, the subformula ψ repeats m times, each time with a different set of free
variables as leading parameters, followed by some unique existential variables.
It should be clear that a prenex formula can easily be obtained by moving all
quantifiers to the front. For a more compact QBF∗ encoding, we now introduce
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additional universally quantified auxiliary variables. We have the choice to de-
clare them either in the scope of the existentials, or to put them in front. In the
first case, this leads to

∃y1,1...∃ym,l∀x1...∀xk+l(∨m
i=1

(∧k
j=1(x j↔ zi, j)∧

∧l
j=1(xk+ j↔ yi, j)

))
→ ψ(x1, ...,xk+l)

where we first choose all the existentials and then abbreviate all arguments of ψ

by the auxiliary variables. In the second case, we obtain the following formula:

∀x1...∀xk∃y1...∃yl

(∨m

i=1

∧k

j=1
(x j↔ zi, j)

)
→ ψ(x1, ...,xk,y1, ...,yl)

Now, the universals abbreviate only the first k arguments, and the values of the
existential variables y1, ...,yl are overwritten for each of the m instantiations of
ψ . It is clear that this requires less variables, and thus less space, than the first
encoding. Still, both encodings are equivalent to the original formula, because
in this example, the existentials in one subformula are independent from the ex-
istentials in another subformula. The second encoding is obviously not possible
if we want to relate the existentials in one instance of ψ to the existentials in
another instance, e.g. to enforce that the last l arguments are given different
truth values for all instantiations of ψ . Is it possible to encode such relationships
without saving all the existentials as in the first encoding? We will now see
that DQBF∗ makes this possible. In [PRA01], the behavior of a nondeterminis-
tic Turing machine over exponential time is encoded into a DQBF∗ formula by
tracking the machine’s head movement and position, current and previous state,
and current and previous symbol. It is important that those variables are properly
updated, e.g., the encoding must enforce that head(t+1) = head(t)+motion(t)
where motion(t)∈{−1,0,+1}. head and t are vectors of Boolean variables that
store the corresponding information in a binary encoding, which is why we write
them in bold. With the above modeling approach, it appears impossible to know
the previous value of a variable. On the other hand, it is not feasible to store the
values of the state variables for all time steps, because the machine may need ex-
ponential time and space. The solution of Peterson et al. to enforce a consistent
computation without storing everything is to have two existential players. When
both are given the same time by the universal player, they must both indicate the
same head position, and if the given times differ by one, the difference between
the head positions of the two players must be equal to the motion of the machine
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at that time. That can be understood intuitively as carrying out the same com-
putation twice, with an offset of one time tick, so that the leading computation
thread can access values from the preceding step.

We suggest that this technique of having two independent existential players
is not only useful for updating variables with subsequent values. It leads to a
general pattern to avoid storing previous values in problems that require knowing
the value of a variable y at time t0 and the value of the same variable at another
time t1. If t0 and/or t1 are known ahead, it is easy to just store y(t0) and/or y(t1)
in helper variables: ∀t∃y∃y0∃y1 ((t = t0)→ (y = y0))∧ ((t = t1)→ (y = y1)).
But if t0 and t1 are not known initially and/or may reoccur periodically, it is
infeasible to store the values of y at all possibly affected times.

For example, assume that we wanted to check in the above Turing machine sim-
ulation whether there is a position on the tape on which the head is positioned
more than once. That means we want to know whether there exist t0 and t1 with
t1 > t0+1 such that head(t0) = head(t1) and head(t0+1) 6= head(t0) (the head
should really move to another position before returning). Since we do not know
which pair of t0 and t1 we are looking for, it appears necessary to store all head
positions from the beginning until we have found a matching pair. But with two
existential players, we can assign each one a copy of the variable y that we are
interested in (in the example, y = head), say y(1) and y(2). They must be chosen
independently at given times t(1) and t(2), which we can achieve with a DQBF∗

prefix of the form ∀t(1)∀t(2)∃y(1)(t(1)) ∃y(2)(t(2)). If t(1) = t(2), both players
must give the same values y(1) = y(2). To work with values of y from different
time points, we add conditions of the form(

(t(1) = t0)∧ (t(2) = t1)
)
→ φ(y(1),y(2))

where φ is an expression that requires y(t0) and y(t1).

For the example of checking for duplicate head positions, we might get the fol-
lowing encoding:

∀t(1)∀t(2) ∃t0()∃t1() ∃head(1)(t(1))∃head(2)(t(2))
(t1 > t0 +1)∧ simulate_machine(t(1), t(2),head(1),head(2))∧(
(t(1) = t(2))→ (head(1) = head(2))

)
∧(

(t(1) = t0)∧ (t(2) = t1)→ (head(1) = head(2))
)
∧(

(t(1) = t0)∧ (t(2) = t0 +1)→ (head(1) 6= head(2))
)

100



4.4. Modeling Graph Reachability with DQBF∗

This formula illustrates our introductory remarks that the most powerful fea-
ture of DQBF∗ in comparison to QBF∗ appears to be the ability to have vari-
able dependencies which are independent of the formula structure: as far as
the variable dependencies are concerned, head(1) is completely unrelated to
head(2), yet both occur in common clauses of the formula and are indeed se-
mantically related. It is unlikely that such patterns have a succinct QBF∗ equiv-
alent: since head(1) and head(2) occur in the same clauses, a non-prenex ap-
proach is not helpful here. And if we just kept the matrix of the formula above,
but with a QBF∗ prefix such as ∃t0∃t1∀t(1)∃head(1)∀t(2)∃head(2), the players
might cheat. With this prefix, the second existential player may choose a move
for the case t(2) = t1 and t(1) = t0 that differs from the one it claims to make
when t(2) = t1, but t(1) = t1. That means the second player gives the first one
false alibis that head(2)(t1) = head(1)(t0) and head(2)(t1) = head(1)(t1), but
if head(2)(t1) varies in the two statements, we have the undetected violation
head(1)(t0) 6= head(1)(t1).

In our example, we need to compare the value of head at three time points, t0,
t0 +1 and t1. We simulate this with two comparisons of two values each, but we
might as well choose an encoding with three existential players:

∀t(1)∀t(2)t(3) ∃t0()∃t1() ∃head(1)(t(1))∃head(2)(t(2))∃head(3)(t(3))
(t1 > t0 +1)∧ simulate_machine(t(1), t(2),head(1),head(2))∧(
(t(1) = t(2) = t(3))→ (head(1) = head(2) = head(3))

)
∧(

(t(1) = t0)∧ (t(2) = t1)∧ (t(3) = t0 +1)→ (head(1) = head(2) 6= head(3))
)

We cannot expect significant gains in expressiveness by using more than two ex-
istential players, because we can always simulate comparisons of multiple values
by pairwise comparisons. But that might require additional helper variables as
flags to remember intermediate comparison results. With additional players, we
can do without them and, depending on the particular problem to be modeled,
obtain more natural encodings.

4.4.2. The Bounded Reachability Problem

The bounded reachability problem for directed graphs is to decide whether a
given graph has a path of bounded length from a start node s to a terminal node t.
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Accordingly, the problem is also called s-t-reachability. The interpretation of
the bound varies in literature: for a given integer k, the maximum path length
is sometimes 2k [Pap94] and sometimes k [DHK05]. We always use the for-
mer, and if necessary, we adapt existing QBF∗ encodings to our definition for
comparisons.

Definition 4.4.1. (Bounded Reachability Problem for Directed Graphs)
Let G = (V,E) be a directed graph with a distinguished start node s ∈ V and a
terminal node t ∈ V , and let k ≥ 0. Then the bounded reachability problem is
to decide whether G contains a path of length ≤ 2k from s to t.

In bounded model checking, currently the most prominent application, reacha-
bility of “bad” states that do not satisfy some given properties is usually checked
with gradually increasing bound k = 0,1,2, .... The process terminates whenever
either a failure path to a bad state has been identified or a maximum bound has
been reached. That maximum bound is sometimes a constant value, e.g. 10 or
20 for some experiments in [CBRZ01], when the graphs are huge and one can
only expect to find short failure paths within reasonable computation time.

In order to find all failure paths, a sufficiently large maximum bound is the
recurrence diameter, the length of the longest path without reoccurring states
[BCCZ99]. But for large graphs, determining the recurrence diameter is a diffi-
cult problem itself (it can also be encoded into a (quantified) Boolean formula),
and in the worst case, the recurrence diameter is close to the number of all nodes
in the graph, which means reachability checking requires k = O(n) to ensure
completeness.

It is well known [Pap94, Sip05] that the reachability problem for directed graphs
is solvable in NSPACE(log |V |) (or in deterministic SPACE(log2 |V |) by Sav-
itch’s Theorem [Sav70]), and clearly also in deterministic polynomial time, e.g.
with a breadth-first search algorithm. This complexity classification assumes
that the graph G is given explicitly, e.g. by an adjacency matrix. Such a repre-
sentation may be very space-consuming for large graphs, but that is not reflected
in the above space requirements, because the graph is part of the input and is
therefore not counted as allocated space. For huge graphs, it might even be in-
feasible to provide an explicit representation. Notice that a graph whose vertices
correspond to the state space of n binary variables has 2n nodes, which leads to
a state space explosion for growing n.
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4.4.3. Existing Propositional and QBF∗ Encodings

In applications like bounded model checking, graphs are typically extremely
large, but also highly structured. With a more succinct encoding of graphs, it
is possible to take advantage of this structuredness in order to obtain a much
more compact representation of huge graphs that cannot be stored explicitly.
Such symbolic encodings allow handling much larger problem instances, at
the expense of an increase in complexity even for quite simple graph problems
[GW84].

In Chapter 1, we have briefly introduced SAT-based bounded model checking,
which currently appears to be one of the most promising symbolic approaches.
Here, the nodes are considered as vectors of Boolean variables and the edges are
implicitly given through a graph transition relation δ which is represented as a
propositional formula. The reachability check then consists of determining the
satisfiability of formulas like the following:

φ := (s = v0)∧ (t = v2k)
2k−1∧
i=0

δ (vi,vi+1)

To illustrate that s, t and vi are actually bit vectors which store the vertices of the
graph in a binary encoding, we write them in bold.

With this kind of encoding, we can easily extend s-t-reachability to the more
general reachability problem with multiple start nodes S⊆V and a set T ⊆V of
terminal nodes where a path from some start node s ∈ S to some terminal t ∈ T
is searched. The idea is to represent sets of nodes by characteristic functions:

ψ := S(vo)∧T (v2k)
2k−1∧
i=0

δ (vi,vi+1)

where S(v0) = 1 if and only if v0 represents one of the start nodes, and analo-
gously for T .

We can observe that there are 2k copies of the transition relation δ , which can be
quite space-consuming when we consider that δ represents the whole structure
of the graph. We have already seen in Sections 1.2 and 2.6 that QBF∗ encodings
can eliminate multiple instantiations of a subformula for different arguments, so
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the formula can be written in QBF∗ with only one instance of δ [DHK05]:

Ψ(v0,v2k) := ∃v1...∃v2k−1∀u∀w S(v0)∧T (v2k)∧((
2k−1∨
i=0

((u = vi)∧ (w = vi+1))

)
→ δ (u,w)

)

Notice that Ψ has been formulated with free variables v0 and v2k . This provides
a more natural notation for recursive encodings like the next one, but if we are
only interested in the mere existence of a path, Ψ can obviously be written as a
closed QBF where v0 and v2k are also existentially quantified.

For simplicity, we assume that the number of nodes in the graph is a power
of two. In the following discussion, we always let |V | = 2n, which means each
node in the graph needs n bits to be encoded. Then the formula Ψ above requires
O(n ·2k) quantified Boolean variables for given n and k. For the maximum bound
k = n, we need exponentially many variables: O(n · 2n). On the other hand, Ψ

has a simple ∃∗∀∗ prefix. It is possible to reduce the number of variables at the
cost of a more complex prefix by applying iterative squaring [Pap94, DHK05]
where paths of length 2k can be checked in only k steps:

Φ(s, t) := S(s)∧T (t)∧ϕ2k(s, t)
ϕ2k(a,b) := ∃z∀u∀w

((u = a)∧ (w = z)∨ (u = z)∧ (w = b))→ ϕ2k−1(u,w)

ϕ0(a,b) := (a = b)∨δ (a,b)

This encoding requires only O(n · k) quantified variables for a graph with 2n

nodes and bound 2k, but the prefix now has O(k) quantifier alternations. For the
maximum bound k = n, that means O(n2) variables in O(n) quantifier blocks.
We now demonstrate that DQBF∗ can encode the problem with even less vari-
ables, only O(n+k) = O(n), while at the same time having a simple ∀∗∃∗ prefix.

4.4.4. Developing a DQBF∗ Reachability Encoding

The QBF∗ encodings that we have presented can be understood as two-player
games. An existential player presents a series of vertices, and a universal player
is checking them to make sure that they form a valid path according to the graph
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transition relation. This checking can either occur in the end, after all vertices
have been presented, as in encoding Ψ, or it can happen gradually, as in the
formula Φ. In contrast to the QBF∗ approaches, we now attempt to store only
one single pair of vertices at a time. That means we need a step counter c,
which is conveniently encoded into a vector of universally quantified variables,
and existentially quantified vectors u and v that are chosen depending on the
value of c. This approach requires that all consistency checks must be made in a
step-wise fashion.

An important correctness criterion for reachability is to have a continuous path:
after going from some vertex u to a vertex v, we cannot continue in the next step
with a transition from w to z if v 6= w. Apparently, continuity cannot be checked
when only one pair of vertices is known. The multi-player modeling pattern
from the beginning of this section provides a solution to the problem of reusing
variables while still requiring access to earlier values. Accordingly, we have one
universal and two non-cooperating existential players. Each existential player i
is presented its own universally quantified step counter c(i). Depending on the
value of the counter, it then chooses vertices u(i) and v(i) to indicate a move from
u(i) to v(i) at the c(i)-th step (i = 1,2). We obtain a prefix of the following form:

∀c(1)∀c(2) ∃u(1),v(1)(c(1)) ∃u(2),v(2)(c(2))

As in the previous section, we assume that |V | = 2n, which means the u(i) and
v(i) need to be vectors of n Boolean variables each. For a path length of 2k, the
c(i) need k bits each. To maintain similarity with the QBF∗ representations from
above, we go for an encoding with free variables s and t. In the formula matrix,
we must then verify that s and t are indeed start and terminal nodes, respectively,
and we must check that the existential players start in s and finish in t. Finally,
we need the conditions that the players behave identically when the counters are
the same and make continuous transitions when the counters differ by one.

Then our complete DQBF∗ encoding is as follows:

Γ(s, t) := ∀c(1)∀c(2) ∃u(1),v(1)(c(1)) ∃u(2),v(2)(c(2))
S(s)∧T (t)∧δ (u(1),v(1))∧
((c(1) = 0)→ (u(1) = s))∧
((c(1) = 2k−1)→ (v(1) = t))∧
((c(2) = c(1))→ (u(1) = u(2))∧ (v(1) = v(2)))∧
((c(2) = c(1)+1)→ (v(1) = u(2)))
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The correctness of the encoding is easy to verify: if existential player 1 goes
from some vertex νi to ν j at the r-th step, existential player 2 must continue at
the (r+1)-th step from ν j to, say, νl . Both players must behave identically, thus
it follows that player 1 also continues from ν j to νl at step (r+1).

4.4.5. Comparisons

Just like the QBF∗ encodings Φ and Ψ, we can get along with only one copy of
the transition relation δ and the indicator functions S and T . Besides this un-
avoidable embedded description of the graph, our encoding Γ is more concise,
as the comparison in Table 4.1 shows: the matrix of Γ contains only a constant
number of tests for equality, whereas Φ needs O(k) and Ψ even O(2k) equality
checks. More importantly, we need less quantified variables: Γ has O(k) univer-
sal and O(n) existential variables, while the QBF∗ formula Φ has O(n · k) exis-
tential and also O(n · k) universal variables. Recall that the latter encoding has
the strong disadvantage of having a complex prefix with O(k) quantifier alterna-
tions. Ψ requires as much as O(n · 2k) existential and O(n) universal variables.
For the maximum bound k = n, we have a total of O(n) quantified variables in
the DQBF∗ encoding versus the QBF∗ formulas with O(n2) (in an unbounded
number of quantifier blocks) or even O(2n) variables.

Table 4.1.: Comparison of bounded reachability encodings

Γ ∈ DQBF∗ Φ ∈ QBF∗ Ψ ∈ QBF∗

Equality Checks O(1) O(k) O(2k)

Existential Variables O(n) O(n · k) O(n ·2k)

Universal Variables O(k) O(n · k) O(n)

Quantifier Alternations O(1) O(k) O(1)

The compactness of the new encoding Γ comes with the price of the potentially
higher complexity of DQBF∗. However, it will be shown in Section 4.6.2 that
instances of Γ for classes of graphs with maximum bound k = O(log |δ |) are in a
ΣP

2 -complete subclass of DQBF∗. With the graph having |V |= 2n nodes, we can
well assume that δ has size at least Ω(log |V |) = Ω(n) when we only consider
non-trivial graphs. Then Γ is solvable in polynomial space when the maximum
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bound is in O(logn). That is sufficient for applications in which the recurrence
diameter is at most polynomial in n, or if exponentially long paths are simply
not feasible for very large graphs. As mentioned earlier, there are hard problems
for which bounded model checking appears only practical with small constant
maximum bounds [CBRZ01].

The above condition k = O(log |δ |) is also satisfied when we have maximum
bounds with k = O(n), which guarantees completeness regardless of the diam-
eter, and graphs with |δ | = Ω(|V |) = Ω(2n). Such graphs must certainly exist,
because there are 222n

possible adjacency matrices over 2n vertices, but at most
(p(n)+ 3)4p(n) different propositional formulas of length p(n) [KBL99]. The
latter is asymptotically smaller than 222n

, so there are graphs that cannot be
encoded with a poly-length transition relation. Unfortunately, the exponential
growth of δ makes such problems barely manageable for sufficiently large val-
ues of n, which means the main advantage of symbolic methods over techniques
with explicit enumeration of vertices is lost. However, there might still be appli-
cations with graphs that are highly structured for the most part, with some small
loosely structured components that have no succinct encoding. Then δ would
still grow exponentially, but with much smaller constant factors than explicit
graph representations.

Since there are no DQBF∗ solvers available yet, it is hard to predict for real
problem instances whether the conciseness and simple structure of the DQBF∗

encoding will win over more voluminous QBF∗ formulas with a possibly easier
satisfiability problem. But we can observe that both QBF∗ encodings above
have structural features that are known for having negative effects on the actual
performance of solvers: Ψ has exponentially many variables in the worst case,
whereas Φ has an unbounded number of quantifier alternations. The former is
obviously unpleasant for solvers, but the latter is also problematic, because the
variable selection of the solvers is usually limited to individual quantifier blocks
and is therefore drastically restricted when the variables are distributed over a
large number of different blocks. Our DQBF∗ encoding, on the other hand, is
not only shorter with asymptotically fewer equality checks, but has the benefits
of a clear and simple prefix with a lower number of variables.
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4.5. Universal Quantifier Expansion for DQBF∗

The expansion of universal quantifiers is a key technique in our work on QBF∗

formulas. We now demonstrate that universal expansion can also be applied in
an analogous way to DQBF∗ formulas.

4.5.1. Expansion Procedure and Correctness

As in QBF∗, the idea of universal expansion is that a universal quantifier ∀x φ(x)
is just an abbreviation for φ(0)∧φ(1). We can expand it by making two copies
of the original matrix, one for the universally quantified variable being false,
and one for that variable being true. Existential variables which depend on that
universal variable need to be duplicated as well. Consider an example:

∀x1∀x2∀x3∃y1(x1,x2)∃y2(x1,x3)∃y3(x3)φ(x1,x2,x3,y1,y2,y3,z)

We want to expand the universal x1, on which the existentials y1 and y2 depend.
We must therefore introduce two separate instances y1,(0) and y1,(1) of the orig-
inal variable y1, where y1,(0) is used in the copy of the matrix for x1 = 0, and
y1,(1) for x1 = 1. Analogously, y2 is duplicated into y2,(0) and y2,(1). We obtain
the following expanded formula:

∀x2∀x3∃y1,(0)(x2)∃y1,(1)(x2)∃y2,(0)(x3)∃y2,(1)(x3)∃y3(x3)

φ(0,x2,x3,y1,(0),y2,(0),y3,z)∧φ(1,x2,x3,y1,(1),y2,(1),y3,z)

The dependency lists immediately indicate which existentials must be duplicated
when a universal variable is expanded. In that respect, universal expansion for
DQBF∗ formulas is in fact clearer and more natural than its QBF∗ equivalent.
On the other hand, the correctness of the expansion procedure is easy to see
in QBF∗, because the semantics definition of QBF∗ explicitly handles universal
quantifiers with the condition that I(∀xΦ′) = 1⇔ I(Φ[x/0]) = I(Φ[x/1]) = 1
for any interpretation I [KBL99]. According to Section 4.3, the DQBF∗ seman-
tics, however, is defined in a more implicit way by using model functions. A
little more effort is therefore needed to prove that the universal quantifiers in
DQBF∗ still behave according to our intuitive understanding and that the expan-
sion procedure outlined above is indeed correct.
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Theorem 4.5.1. (Correctness of Universal Expansion for DQBF∗)
Let Φ be a DQBF∗ formula in which we want to expand the innermost universal
quantifier ∀xn. Without loss of generality, we assume that the existential vari-
ables are arranged in two blocks, depending on whether they are dominated by
xn or not:

Φ(z) = ∀x1...∀xn∃y1(xd1)...∃yk(xdk)∃yk+1(xdk+1 ,xn)...∃ym(xdm ,xn)

φ(x1, ...,xn,y1, ...,ym,z)

with xn 6∈ xdi for all 1≤ i≤ m.

Then Φ(z)≈Φ′(z) where

Φ′(z) = ∀x1...∀xn−1∃y1(xd1)...∃yk(xdk)

∃yk+1,(0),yk+1,(1)(xdk+1)...∃ym,(0),ym,(1)(xdm)

φ(x1, ...,xn−1,0,y1, ...,yk,yk+1,(0), ...,ym,(0),z)∧
φ(x1, ...,xn−1,1,y1, ...,yk,yk+1,(1), ...,ym,(1),z)

is the formula obtained from expanding ∀xn.

Proof:
In order to show Φ(z)≈Φ′(z), we must prove that Φ(t(z)) = 1⇔Φ′(t(z)) = 1
for any truth assignment t(z) := (t(z1), ..., t(zr)) ∈ {0,1}r to the free variables
z = (z1, ...,zr). For any given t(z), we can consider Φ(t(z)) and Φ′(t(z)) as
closed DQBF formulas which are true if and only if they have a satisfiability
model.

From left to right: let M = ( fy1 , ..., fym) be a satisfiability model for Φ(t(z)),
and let φ(x1, ...,xn, fy1 , ..., fym , t(z)) denote the formula that we obtain when all
occurrences of yi in φ are replaced with the formula fyi(xdi,1 , ...,xdi,ni

) for each
i = 1, ...,m, and when the free variables z are assigned the truth values t(z).
Define G(0) := (gy1 , ...,gyk ,gyk+1,(0) , ....,gym,(0)) with gyi := fyi for i = 1, ...,k and
gyi,(0)(xdi,1 , ...,xdi,ni

) := fyi(xdi,1 , ...,xdi,ni
,0) for i = k+1, ...,m. Then

∀x1...∀xn φ(x1, ...,xn, fy1 , ..., fym , t(z)) = 1

implies

∀x1...∀xn−1 φ(x1, ...,xn−1,0,gy1 , ...,gyk ,gyk+1,(0) , ...,gym,(0) , t(z)) = 1 .
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Similarly, we let G(1) := (gy1 , ...,gyk ,gyk+1,(1) , ....,gym,(1)) with model functions
gyi,(1)(xdi,1 , ...,xdi,ni

) := fyi(xdi,1 , ...,xdi,ni
,1) for i = k+1, ...,m, such that

∀x1...∀xn−1 φ(x1, ...,xn−1,1,gy1 , ...,gyk ,gyk+1,(1) , ...,gym,(1) , t(z)) = 1 .

It follows that G = (gy1 , ...,gyk ,gyk+1,(0) ,gyk+1,(1) , ...,gym,(0) ,gym,(1)) is a satisfiabil-
ity model for Φ′(t(z)).

From right to left: let G = (gy1 , ...,gyk ,gyk+1,(0) ,gyk+1,(1) , ...,gym,(0) ,gym,(1)) be a
satisfiability model for Φ′(t(z)). We now construct a model M = ( fy1 , ..., fym)
that satisfies Φ(t(z)). For i = 1, ...,k, we let fyi := gyi , and for i = k+ 1, ...,m,
we define

fyi(xdi,1 , ...,xdi,ni
,xn) := (xn∨gyi,(0)(xdi,1 , ...,xdi,ni

))∧ (¬xn∨gyi,(1)(xdi,1 , ...,xdi,ni
))

such that fyi [xn/0] := fyi(xdi,1 , ...,xdi,ni
,0)≈ gyi,(0)(xdi,1 , ...,xdi,ni

), and thus:

∀x1...∀xn−1 φ(x1, ...,xn−1,0, fy1 , ..., fyk , fyk+1 [xn/0], ..., fym [xn/0], t(z))
≈ ∀x1...∀xn−1 φ(x1, ...,xn−1,0,gy1 , ...,gyk ,gyk+1,(0) , ...,gym,(0) , t(z))

The latter is true, because G is a satisfiability model for Φ′(t(z)). The case xn = 1
works analogously, and it follows that

∀x1...∀xn−1∀xn φ(x1, ...,xn−1,xn, fy1 , ..., fym , t(z)) = 1

which confirms that M is a satisfiability model for Φ(t(z)).

4.5.2. Iterated Expansion and DQBF∗ to QBF∗

Transformation

We can apply the universal expansion procedure from Theorem 4.5.1 iteratively
and eliminate multiple universal quantifiers. While the number of existential
variables grows when doing so, their dependency lists are getting shorter, be-
cause when a universal xi is expanded, it is of course removed from all depen-
dencies. If the process continues, we ultimately obtain a formula with only exis-
tential quantifiers, all of them having empty dependencies. Then the existential
variables have simple 0/1 satisfiability models, so that the formula can also be
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considered as a ∃BF∗ formula. That means we have just found a transformation
from DQBF∗ to ∃BF∗ ⊆ QBF∗.

In Section 4.3.3, we have already shown that DQBF∗ formulas can be converted
into QBF∗ by replacing existential variables with the corresponding equivalence
model functions, but with universal expansion, we do not need to know the
equivalence model.

Theorem 4.5.2. For every DQBF∗ formula

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

)φ(x,y,z)

with universal variables x= x1, ...,xn, existential variables y= y1, ...,ym and free
variables z, there exists an equivalent ∃BF∗ formula Φ∃BF that can be obtained
by universal quantifier expansion as follows:

Φ∃BF(z) := ∃y1,(0,...,0)∃y1,(0,...,0,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,...,0)∃ym,(0,...,0,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)

∧
t(x)∈{0,1}n

φ(t(x),y1,(t(xd1,1 ),...,t(xd1,n1
)), ...,ym,(t(xdm,1 ),...,t(xdm,nm )),z)

Proof:
The equivalence of Φ and Φ∃BF immediately follows from the fact that this
transformation is an iterated application of individual expansion steps, which
have been shown to be equivalence-preserving in Theorem 4.5.1.

Here is an example: the formula

Φ(z) = ∀x1∀x2∀x3∃y1(x1,x2)∃y2(x2,x3)φ(x1,x2,x3,y1,y2,z)

is expanded to

Φ∃BF(z) = ∃y1,(0,0)∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,0)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)

φ(0,0,0,y1,(0,0),y2,(0,0),z)∧φ(0,0,1,y1,(0,0),y2,(0,1),z)
∧ φ(0,1,0,y1,(0,1),y2,(1,0),z)∧φ(0,1,1,y1,(0,1),y2,(1,1),z)
∧ φ(1,0,0,y1,(1,0),y2,(0,0),z)∧φ(1,0,1,y1,(1,0),y2,(0,1),z)
∧ φ(1,1,0,y1,(1,1),y2,(1,0),z)∧φ(1,1,1,y1,(1,1),y2,(1,1),z)
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If we just want to obtain a QBF∗ formula, but not necessarily ∃BF∗, we do not
need to expand all universals. When we only expand x1 in the formula Φ(z)
from above, we get

Φ′(z) = ∀x2∀x3∃y1,(0)(x2)∃y1,(1)(x2)∃y2(x2,x3)

φ(0,x2,x3,y1,(0),y2,z)∧φ(1,x2,x3,y1,(1),y2,z)

which can already be written in prenex QBF∗ as

Ψ(z) = ∀x2∃y1,(0)∃y1,(1)∀x3∃y2 φ(0,x2,x3,y1,(0),y2,z)∧φ(1,x2,x3,y1,(1),y2,z) .

More details about the selection of universals to expand when transforming
DQBF∗ formulas into QBF∗ will be provided in Section 4.6.1. But even with
sophisticated selection strategies, it is clear that this expansion may lead to an
exponential blowup of the input formula, which is not surprising if we assume
that PSPACE 6= NEXPTIME. An example for a formula with exponential growth
is our DQBF∗ encoding of bounded reachability from Section 4.4.4 with the fol-
lowing prefix:

∀c(1)∀c(2) ∃u(1),v(1)(c(1)) ∃u(2),v(2)(c(2))

In order to convert this DQBF∗ formula Γ into a QBF∗ formula, we must expand
at least one of the universally quantified vectors c(1) or c(2), both of which may
have O(|Γ|) many universal variables in the worst case.

We will, however, show in Sections 4.6.1 and 4.7 that there are non-trivial sub-
classes of DQBF∗ for which the above expansion remains polynomial.

4.6. Structure of the Dependencies

In this and the next section, we attempt to avoid the NEXPTIME-completeness of
DQBF∗ by considering interesting DQBF∗ subclasses that have lower complex-
ity. In QBF∗, the most well-known subclasses are defined through constraints on
the clause structure or through restrictions on the structure of the quantifier pre-
fix. The latter typically means that the sequence of quantifier blocks is restricted
to a particular prefix type. However, DQBF∗ formulas can always be written
with a ∀∗∃∗ prefix, so this approach is not useful in the DQBF∗ case. We have
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already seen that the information contained in quantifier alternations in QBF∗

is represented in the dependency lists xdi,1 , ...,xdi,ni
of dependency quantified ex-

istentials yi. Our idea is therefore to obtain DQBF∗ subclasses by imposing
restrictions on the structure of the dependencies.

4.6.1. Orderable Dependencies

We can identify the class of (prenex) QBF∗ formulas with the class of DQBF∗

formulas Φ(z) = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y,z) that satisfy the condi-
tion (xd j ⊆ xdk or xd j ⊇ xdk) for all 1 ≤ j,k ≤ m, because that implies a total
ordering xdi1

⊆ ...⊆ xdim
which can be represented by a linear prefix with non-

dependency quantifiers ∀xdi1
∃y1∀(xdi2

\ xdi1
)∃y2....∀(xdim

\ xdim−1
)∃ym, where

∀xdi := ∀xdi,1 ...∀xdi,ni
.

It is easy to see that classes of QBF∗ formulas with a particular prefix type,
that means formulas with a restricted number of quantifier blocks in the prefix,
correspond to DQBF∗ formulas that satisfy the ordering condition above and the
additional restriction that the number of different dependencies is bounded.

With the help of the universal quantifier expansion method from Section 4.5, we
can eliminate all universals which violate the total ordering. If that affects only
logarithmically many universals, they can be expanded in polynomial time and
thus in polynomial space. Then we can weaken the ordering requirements as
follows:

Definition 4.6.1. (Polynomially Orderable Dependencies DpoQBF∗)
With DpoQBF∗, we denote the class of dependency quantified Boolean formulas
with polynomially orderable dependencies. That is, formulas

Φ(z) = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y,z)

with ∣∣∣∣∣ ⋃
1≤ j<k≤m

(xds j
\xdsk

)

∣∣∣∣∣ ∈ O(log |Φ|)

for some ordering S = (s1, ...,sm) ∈ {1, ...,m}m on the dependencies.

Theorem 4.6.2. The satisfiability problem for DpoQBF∗ is PSPACE-complete.
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Proof:
Given Φ ∈ DpoQBF∗, let Φ′ be the formula obtained from Φ by expanding all
universal quantifiers in X :=

⋃
1≤ j<k≤m(xds j

\ xdsk
). Then |Φ′| ≤ 2|X | ≤ p(|Φ|)

for some polynomial p, and Φ′ can be computed in polynomial time, because
each expansion step can be performed in time at most O(|Φ′|2). The remaining
dependencies x′d1

, ...,x′dm′
in Φ′ can be ordered x′di1

⊆ ... ⊆ x′dim′
. As discussed

above, Φ′ can thus be rewritten as an equivalent QBF∗ formula, which can be
solved in polynomial space.
The PSPACE-hardness is easily seen from the fact that we can write in polyno-
mial time any QBF∗ formula Ψ as an equivalent DQBF∗ formula Ψ′ in which
the dependencies xdi for each existential quantifier ∃yi are exactly those univer-
sals whose quantifiers occur earlier in the prefix of Ψ. Then |Ψ′| ≤ |Ψ|2 and
xd j ⊆ xdk for all j < k, which is just a special case of the definition above.

An application of this discussion might be a satisfiability solver or proof system
which externally accepts DpoQBF∗ formulas, but internally preprocesses them
into QBF∗ and feeds them to an encapsulated QBF∗ engine. That would give
users the benefit of a clearer notation with explicit variable dependencies, which
removes the need for non-prenex formulas and allows for more natural modeling
of problems, while the system itself could be based on existing QBF∗ techniques.
We will later see that the translation from dependency quantifiers to ordinary
quantifiers is also possible in polynomial time for Horn formulas.

4.6.2. Dependencies of Limited Size

Another obvious restriction on the dependencies is to limit their cardinalities as
in the following definition:

Definition 4.6.3. (Logarithmic Dependencies DlogQBF∗)
With DlogQBF∗, we denote the class of dependency quantified Boolean formulas
with logarithmic dependencies. That is, formulas

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y,z)

with n1, ...,nm ∈ O(log |Φ|), such that each existential variable depends on at
most logarithmically many universals.

Theorem 4.6.4. The satisfiability problem for DlogQBF∗ is ΣP
2 -complete.
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Proof:
We first show that DlogQBF∗-SAT is in ΣP

2 . Recall that the complexity class
ΣP

2 = NPNP contains all problems which can be decided non-deterministically
in polynomial time with the help of an NP oracle or, equivalently, a coNP oracle.
We begin with guessing a satisfying truth assignment τ(z) to the free variables.
Then we can replace in polynomial time all occurrences of free variables zi with
the corresponding truth value τ(zi), so that we can continue with the closed
formula Φ′ = Φ(τ(z)). Φ′ is satisfiable if and only if it has a satisfiability model
M = ( fy1 , ..., fym). Each fyi can be represented as a truth table with O(2log |Φ|) =
O(|Φ|) rows and O(log |Φ|) columns or, equivalently, as a propositional formula
of length O(|Φ| · log |Φ|). Hence, the whole satisfiability model can be guessed
in time and space O(m · |Φ| · log |Φ|) = O(|Φ|3).
We can then replace in polynomial time each occurrence of an existential yi
with the corresponding fyi represented as propositional formula. The resulting
formula Φ′[y/M] is an ordinary QBF∗ formula with only universal quantifiers
and has size O(|Φ|3). Its satisfiability can be checked with a coNP-oracle.

The ΣP
2 -hardness of DlogQBF∗-SAT is easy to prove with a reduction from the

satisfiability problem for QBF2,∃, the class of quantified Boolean formulas with
a ∃∗∀∗ prefix. A QBF2,∃ formula

Ψ = ∃y1...∃ym∀x1...∀xn ψ(x1, ...,xn,y1, ...,ym)

is satisfiable if and only if the corresponding DlogQBF∗ formula

Φ = ∀x1...∀xn∃y1()...∃ym() φ(x1, ...,xn,y1, ...,ym)

is satisfiable1.

A natural special case of DlogQBF∗ is what we call DkQBF∗ formulas, in which
the dependencies are bounded by a maximum cardinality k.

Definition 4.6.5. (Bounded Dependencies DkQBF∗)
For fixed k ≥ 0, let DkQBF∗ denote the class of dependency quantified Boolean
formulas with bounded dependencies. That is, formulas

Φ = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y)

with n1, ...,nm ≤ k, such that an existential variable can depend on at most k
universal variables.

1We could avoid the empty dependencies by adding a dummy variable x0 as follows:
∀x0∀x1...∀xn∃y1(x0)...∃ym(x0) φ(x1, ...,xn,y1, ...,ym)
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It is clear that the ΣP
2 -hardness in the preceding proof still holds for DkQBF∗,

since the reduced formula has existential variables which depend on zero uni-
versals (or at most one, if the remark from the footnote is applied).

Corollary 4.6.6. The satisfiability problem for DkQBF∗ is ΣP
2 -complete.

Problems where the dependencies are restricted to logarithmic or constant length
may occur quite naturally within the general pattern for DQBF∗ modeling that
we have presented in Section 4.4.1. In this game-based approach with a universal
player and multiple existential players, the universal player provides counter
values encoded into binary vectors c(i), and the i-th existential player has to state
its actions in round c(i). The matrix of the formula is satisfiable if and only if the
actions of the existential players are consistent with the rules of the game and
the existential players reach a final (winning) state. It is easy to see that such
formulas are in DlogQBF∗ if the range of the counter values is asymptotically at
most logarithmic in the size of the consistency and termination checks that make
up the formula matrix.

For a specific example, consider our encoding Γ of bounded reachability from
Section 4.4.4. Γ has a prefix of the form

∀c(1)∀c(2) ∃u(1),v(1)(c(1)) ∃u(2),v(2)(c(2))

with c(i) = (c(i)1 , ...,c(i)k ) being vectors of k Boolean variables that can encode
step counters from 0 to 2k−1, and u(i),v(i) ∈ {0,1}n being vectors of n variables
to encode up to 2n graph nodes. That means each existential variable depends
on O(k) universals. The formula matrix of our reachability encoding grows
asymptotically at least as fast as the transition relation δ (assuming we have
non-trivial graphs with |δ | ∈ Ω(log |V |) = Ω(n)). It follows that Γ ∈ DlogQBF∗

for classes of instances with k ∈ O(log |δ |).

An interesting observation is that we also have Γ ∈ DpoQBF∗ if k ∈ O(log |δ |).
That means we could apply universal expansion to transform such formulas Γ

into equivalent QBF∗ formulas of polynomial length. The same observation ap-
plies to all formulas following the above multi-player game approach when the
counter values have logarithmic bounds and there is only a constant number of
existential players. If, however, the number of existential players is not constant,
but depends on n, the formulas are still in DlogQBF∗, but no longer in DpoQBF∗,
and universal expansion will cause exponential growth. Moreover, in the case
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of the bounded reachability encoding Γ, it is probably not a good idea anyway
to perform universal expansion in this way, because it would involve duplicat-
ing the transition relation δ many times, which was exactly what we wanted to
prevent with a quantified encoding in the first place.

To conclude this section, we would like to point out that the DQBF∗ encoding of
bounded reachability has a remarkably simple structure: there are two vectors of
universally quantified counter variables c(1) and c(2), and all existential variables
depend on either c(1) or c(2). That means such formulas have only two differ-
ent dependency lists (in multiple instantiations), and the two are even disjoint.
Nevertheless, this is sufficient to reason about paths with up to 2n steps, which
is exponentially larger than the formula size for succinctly representable graphs.
The expressiveness of this simple construction hardly leaves any possibilities to
achieve lower complexity by making any other restrictions on the structure of
the dependencies besides the ones that have been suggested here.

4.7. Dependency Quantified Horn Formulas

We now consider formulas with Horn clauses, one of the most interesting re-
strictions on the structure of clauses, in contrast to the restrictions on the prefix
structure from the preceding section. Formally, we define the class DQHORN∗

to contain all DQBF∗ formulas in conjunctive normal form whose clauses have
at most one positive literal. Besides quantification with dependencies, this is
analogous to the class QHORN∗ that we have studied thoroughly in Chapter 3,
so we can investigate how the addition of dependency quantifiers affects the ex-
pressive power and the complexity of the satisfiability problem.

4.7.1. Satisfiability Models for DQHORN Formulas

As in Chapter 3, we begin our investigations with closed DQHORN formulas and
the corresponding satisfiability models. Again, we denote by Bi

n the bit vector
of length n where only the i-th element is zero. Moreover, Z≤1(n), Z=1(n), and
Z≥1(n), respectively, are again tuples of length n with at most one zero, exactly
one zero, and at least one zero, respectively.
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In Theorem 3.3.5, we have been able to show that the satisfiability model of
a QHORN formula can be reduced to a small core, namely a Z≤1-partial satis-
fiability model, which covers only cases where at most one of the universally
quantified variables is zero. That result could be considered as a generalization
of the property of propositional Horn formulas that the intersection of two satis-
fying truth assignments is also a satisfying truth assignment. Can we further lift
this to dependency quantified Horn formulas? It appears that the closure under
intersection is such a fundamental property of Horn formulas that it can indeed
be applied to DQHORN as well. The following approach of completing partial
models into total satisfiability models resembles the QHORN case, but we have
chosen a more elementary proof to make it clearer that the dependencies are
respected.

Definition 4.7.1. (R∀-partial Satisfiability Model for DQBF)
For Φ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y), let M = ( fy1 , ..., fym) map each
existential variable yi to a propositional formula fyi over the universal variables
xdi = xdi,1 , ...,xdi,ni

on which yi depends. Furthermore, let R∀(n) be a relation
on the set of possible truth assignments to n universals. Then M is a R∀-partial
satisfiability model for Φ if the formula φ [y/M] is true for all x ∈ R∀(n).

Theorem 4.7.2. Let Φ = Qφ(x,y) ∈ DQHORN be a dependency quantified
Horn formula with a Z≤1-partial satisfiability model M = ( fy1 , .., fym). Then
its total completion Mt = ( f t

y1
, ..., f t

ym) with

f t
yi
(xdi,1 , ...,xdi,ni

) := (xdi,1 ∨ fyi(0,1,1, ...,1))

∧ (xdi,2 ∨ fyi(1,0,1, ...,1))
∧ ...

∧ (xdi,ni
∨ fyi(1,1, ...,1,0))

∧ fyi(1, ...,1)

is a satisfiability model for Φ.

Proof:
We need to show that φ [y/Mt ] is true for all possible truth value assignments
t(x) := (t(x1), ..., t(xn)) ∈ {0,1}n to the universal variables.
Since f t

y j
(1, ...,1) = fy j(1, ...,1), we only need to consider t(x) ∈ Z≥1.

The proof is by induction on the number of zeros in t(x). The induction base
is the case t(x) ∈ Z=1. Let t(x) = Bi

n be an assignment to the universals where
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t(xi) = 0. In order to prove that every clause in φ [y/Mt ] is true for t(x), we make
a case distinction on the structure of Horn clauses. Any clause C belongs to one
of the following cases:

1. C = y j ∨
∨

l∈Ly ¬yl ∨
∨

l∈Lx ¬xl (positive existential literal y j):
We only consider i 6∈ Lx, because C[y/Mt ] is trivially true if i ∈ Lx.
If fy j(t(xd j,1), ..., t(xd j,n j

)) = 1 and fy j(1, ...,1) = 1 then
f t
y j
(t(xd j,1), ..., t(xd j,n j

)) = fy j(t(xd j,1), ..., t(xd j,n j
))∧ fy j(1, ...,1) = 1.

Otherwise, if fy j(τ) = 0 for τ = (t(xd j,1), ..., t(xd j,n j
)) and/or τ = (1, ...,1),

we have fyr(τ) = 0 for some r ∈ Ly, as M is a Z≤1-partial satisfiability
model. This implies f t

yr(t(xdr,1), ..., t(xdr,nr
)) = 0, which makes C[y/Mt ]

true.

2. C = x j ∨
∨

l∈Lx ¬xl ∨
∨

l∈Ly ¬yl (positive universal literal x j):
The only interesting case is i = j. M being a Z≤1-partial satisfiability
model implies fyr(t(xdr,1), ..., t(xdr,nr

)) = 0 for some r ∈ Ly. It follows that
f t
yr(t(xdr,1), ..., t(xdr,nr

)) = 0.

3. C =
∨

l∈Lx ¬xl ∨
∨

l∈Ly ¬yl (no positive literal):
We only need to discuss i 6∈ Lx. Then this case is analogous to 2.

For the induction step, we consider an assignment where k > 1 universals are
false. Let t(xi1) = 0, ..., t(xik) = 0 and t(xs) = 1 for s 6= i1, ..., ik. In order to show
that φ [y/Mt ] is true for t(x), we can use the induction hypothesis and assume
that φ [y/Mt ] is true for t1(x) = Bik

n as well as for tk−1(x) with tk−1(x1) = 0, ...,
tk−1(xik−1) = 0 and tk−1(xs) = 1 for s 6= i1, ..., ik−1. That means the case with k
zeros xi1 ,..., xik is reduced to the case where only xik is zero and the case where
xi1 , ..., xik−1 are zero.

Then the definition of f t
y j

implies:

f t
y j
(t(xd j,1), ..., t(xd j,n j

)) = f t
y j
(t1(xd j,1), ..., t1(xd j,n j

))∧ f t
y j
(tk−1(xd j,1), ..., tk−1(xd j,n j

))

Again, we make a case distinction. It is actually very similar to the one from the
induction base:

1. C = y j ∨
∨

l∈Ly ¬yl ∨
∨

l∈Lx ¬xl (positive existential literal y j):
We assume i1, ..., ik 6∈ Lx, because otherwise, C[y/Mt ] is trivially true.
If f t

y j
(t1(xd j,1), ..., t1(xd j,n j

)) = 1 and f t
y j
(tk−1(xd j,1), ..., tk−1(xd j,n j

)) = 1,
we have f t

y j
(t(xd j,1), ..., t(xd j,n j

)) = 1.
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Otherwise, without loss of generality, let f t
y j
(t1(xd j,1), ..., t1(xd j,n j

)) = 0.
Then the induction hypothesis implies that f t

yr(t1(xdr,1), ..., t1(xdr,nr
)) = 0

for some r ∈ Ly, and we get f t
yr(t(xdr,1), ..., t(xdr,nr

)) = 0.

2. C = x j ∨
∨

l∈Lx ¬xl ∨
∨

l∈Ly ¬yl (positive universal literal x j):
The only interesting case to discuss is j ∈ {i1, ..., ik}. Without loss of
generality, we assume j = ik. Then it follows from the induction hy-
pothesis that f t

yr(t1(xdr,1), ..., t1(xdr,nr
)) = 0 for some r ∈ Ly, and therefore

f t
yr(t(xdr,1), ..., t(xdr,nr

)) = 0.

3. C =
∨

l∈Lx ¬xl ∨
∨

l∈Ly ¬yl (no positive literal):
We only need to discuss i1, ..., ik 6∈ Lx. Then this case is analogous to 2.

It follows that DQHORN formulas have satisfiability models with functions of
the form fyi(xdi,1 , ...,xdi,ni

) =
∧

j∈J xdi, j (or the constants fyi = 0 resp. fyi = 1),
just the same K2 structure that is characteristic for the class QHORN. This
result leads to the surprising observation that Horn formulas with dependency
quantifiers are not substantially more expressive than with ordinary quantifiers.
Accordingly, we are going to show in the next section that the former can be
transformed into the latter without significant blowup.

4.7.2. Transformation from DQHORN∗ to ∃HORN∗

Earlier in this chapter, we have described how universal quantifier expansion
can eliminate dependencies and convert DQBF∗ formulas into equivalent QBF∗

formulas, with obvious exponential blowup for formulas with arbitrary variable
dependencies. But from Section 3.6.2, we already know that the expansion of
universal quantifiers is feasible for ordinary QHORN∗ formulas, because the be-
havior of the existential quantifiers is completely determined by the cases where
at most one universal is false. With the result from the previous section on closed
DQHORN formulas, which we can also apply to DQHORN∗ by considering
fixed assignments to the free variables, we can now prove that it is also feasible
to transform DQHORN∗ formulas into ∃HORN∗ by universal expansion.
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Theorem 4.7.3. (DQHORN∗ to ∃HORN∗ Transformation)
Any DQHORN∗ formula

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

)φ(x,y,z)

can be transformed into an ∃HORN∗ formula

Φ∃HORN(z) := ∃y1,(0,1,...,1)∃y1,(1,0,1,...,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,1,...,1)∃ym,(1,0,1,...,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)

∧
t(x)∈Z≤1(n)

φ(t(x),y1,(t(xd1,1 ),...,t(xd1,n1
)), ...,ym,(t(xdm,1 ),...,t(xdm,nm )),z)

such that Φ(z)≈Φ∃HORN(z).

Example:

Φ(z) = ∀x1∀x2∀x3∃y1(x1,x2)∃y2(x2,x3)φ(x1,x2,x3,y1,y2,z)

with matrix φ ∈ HORN is transformed into

Φ∃HORN(z) = ∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)

φ(0,1,1,y1,(0,1),y2,(1,1),z)∧φ(1,0,1,y1,(1,0),y2,(0,1),z)
∧ φ(1,1,0,y1,(1,1),y2,(1,0),z)∧φ(1,1,1,y1,(1,1),y2,(1,1),z)

Proof:
The implication Φ(z) |= Φ∃HORN(z) is obvious, as the clauses in Φ∃HORN are
just a subset of the clauses in the general DQBF∗ to ∃BF∗ expansion Φ∃BF,
which has been shown in Theorem 4.5.2 to be equivalent to Φ.

The implication Φ∃HORN(z) |= Φ(z) is more interesting. We first consider the
case Φ ∈ DQHORN without free variables and prove that the satisfiability of
Φ∃HORN implies that Φ has a Z≤1-partial satisfiability model. Let t be a sat-
isfying truth assignment to the existentials in Φ∃HORN. From t, we construct
a Z≤1-partial satisfiability model for Φ by assembling the truth assignments to
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the individual copies yi,(xdi,1 ,...,xdi,ni
) of an existential variable yi into a common

model function:

fyi(xdi,1 , ...,xdi,ni
) = (¬xdi,1 ∧ xdi,2 ∧ ...∧ xdi,ni

→ t(yi,(0,1,...,1)))

∧ (xdi,1 ∧¬xdi,2 ∧ xdi,3 ∧ ...∧ xdi,ni
→ t(yi,(1,0,1,...,1)))

∧ ...

∧ (xdi,1 ∧ ...∧ xdi,ni−1 ∧¬xdi,ni
→ t(yi,(1,...,1,0)))

∧ (xdi,1 ∧ ...∧ xdi,ni
→ t(yi,(1,...,1)))

Now, the fyi constitute a Z≤1-partial satisfiability model for Φ, because for all
x = (x1, ...,xn) with x ∈ Z≤1, we have fyi(xdi,1 , ...,xdi,ni

) = t(yi,(xdi,1 ,...,xdi,ni
)), and

φ(x1, ...,xn, t(y1,(xd1,1 ,...,xd1,n1
)), ..., t(ym,(xdm,1 ,...,xdm,nm ))) = 1 due to the satisfiabil-

ity of Φ∃HORN.

In the case that Φ∈DQHORN∗ has free variables, let z∗ an arbitrary assignment
to the free variables such that Φ∃HORN(z∗) is satisfiable. With the free variables
fixed, we can treat both Φ∃HORN(z∗) and Φ(z∗) as closed formulas. Then we
have just shown in the preceding paragraph of this proof that the satisfiability
of Φ∃HORN(z∗) implies that Φ(z∗) has a Z≤1-partial satisfiability model. Then it
follows from Theorem 4.7.2 that Φ(z∗) has a satisfiability model and is therefore
satisfiable.

We immediately obtain the following corollary:

Corollary 4.7.4. For any DQHORN∗ formula Φ, there exists an equivalent
∃HORN∗ formula without dependency quantifiers whose length is bounded by
|∀| · |Φ|, where |∀| is the number of universal quantifiers in Φ, and |Φ| is the
length of Φ.

The slow growth of the resulting formula and its simple prefix with only existen-
tial non-dependency quantifiers make this transformation suitable for determin-
ing the satisfiability of a formula Φ ∈ DQHORN∗ with the following algorithm:

1. Transform Φ into Φ∃HORN according to Theorem 4.7.3. This requires time
O(|∀| · |Φ|) and produces a formula of length |Φ∃HORN|= O(|∀| · |Φ|).

2. Determine the satisfiability of φ∃HORN, the matrix of Φ∃HORN. This propo-
sitional Horn formula can be solved in time O(|φ∃HORN|) = O(|∀| · |Φ|).
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In total, the algorithm requires time O(|∀| · |Φ|), which means DQHORN satisfi-
ability is not only tractable, but appears to have the same complexity as the best
known algorithms for solving QHORN∗.

Theorem 4.7.5. Let Φ ∈ DQHORN∗ be a dependency quantified Horn formula
with free variables. Then the satisfiability of Φ can be determined within time
O(|∀| · |Φ|), where |∀| is the number of universal quantifiers in Φ, and |Φ| is the
length of Φ.

In the proof of Theorem 4.7.3, it is not required that the free variables have
the Horn property. We can therefore extend our result to DQCNF∗ formu-
las in which only the quantified variables alone need to be a Horn formula,
which means every clause may have an arbitrary number of positive free literals
and at most one positive quantified literal. We call these formulas DQHORNb,
in analogy to Section 3.8. In combination with earlier results that ∃HORNb

and QHORNb satisfiability are NP-complete and that both classes are poly-time
equivalent, we obtain the following theorem:

Theorem 4.7.6. The satisfiability problem for the formula class DQHORNb is
NP-complete, and DQHORNb =poly−time QHORNb =poly−time ∃HORNb.

Our results show that explicit variable dependencies can be added to quantified
Horn formulas without increase in complexity. On the other hand, dependency
quantified Horn formulas are not significantly more concise, only by a quadratic
factor. But we obtain for free the inherent benefits of dependency quantification,
such as a clearer notation that removes the need for non-prenex formulas and
allows for more natural modeling of problems.

It is important to point out that these results apply only to quantified HORNb

formulas. For arbitrary quantified Boolean formulas, it is generally assumed
that more powerful quantification is exponentially more concise, that means
DQBF∗ >poly−length QBF∗ >poly−length ∃BF∗, unless the corresponding com-
plexity classes coincide. Proving this chain of increasing expressiveness with-
out complexity-theoretic assumptions appears, however, to be a very challenging
problem.
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4.8. Summary

Partially ordered quantification with explicit variable dependencies is a powerful
addition to the language of quantified Boolean formulas. It allows more succinct
and more natural formula representations without the need for non-prenex for-
mulas. In particular, the ability to have variable dependencies that are indepen-
dent from the formula structure allows for new compact modeling approaches.
By extending the well-known two-player game encodings from QBF∗ with addi-
tional independent existentially quantified players, DQBF∗ encodings can better
reuse quantified variables. We have demonstrated this with a new DQBF∗ rep-
resentation of the well-known bounded reachability problem for directed graphs
which is fundamental to bounded model checking.

The benefits of dependency quantification can be enjoyed without the higher
complexity of general DQBF∗ satisfiability when suitable subclasses are con-
sidered. We show that interesting non-trivial subclasses are obtained through
restrictions on the clause structure or the structure of the dependencies in the
prefix. The latter includes formulas with dependencies of bounded or at most
logarithmic size (DkQBF∗ or DlogQBF∗) which are ΣP

2 -complete to solve, as well
as formulas with dependencies that can be ordered within polynomial space, de-
noted DpoQBF∗, a PSPACE-complete generalization of QBF∗.

Our most interesting result on DQBF∗ subclasses is that quantified Horn for-
mulas do not appear to become more complex when dependency quantifiers are
added. The closure under intersection of satisfying truth assignments proves to
be a fundamental property of Horn clauses, and our framework of partial satis-
fiability models seems to capture this quite well, so that we could smoothly lift
our main results from Chapter 3 to DQHORN∗ and DQHORNb.

We have also shown that universal quantifier expansion works just like in QBF∗,
in fact even slightly more elegant, because it is explicitly indicated which exis-
tentials are dominated by a universal variable. As we have demonstrated, that
allows translating DQBF∗ into QBF∗, so that a solver or proof system could be
built which uses DQBF∗ as a specification language, but solves such formulas
by preprocessing them into QBF∗ and using an encapsulated QBF∗ solver. It is
shown that the QBF∗ translation requires only polynomial time for DQHORN∗,
DQHORNb and DpoQBF∗ formulas.

Besides the conversion of DQBF∗ into QBF∗, universal expansion might also be
helpful in building a full DQBF∗ solver, because after all, expansion is one of
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the most successful solving techniques for QBF∗. Adopting other approaches,
e.g. DPLL-style backtracking, to DQBF∗ appears to be problematic because
of the necessity to store all the model functions associated with the existen-
tially quantified variables. However, one of the best available QBF solvers,
sKizzo [Ben05a], is based on explicitly computing the model functions and stor-
ing them compactly as ROBDDs. We assume that this approach might also be
successfully lifted to DQBF∗, so that it should only be a matter of time until we
see expansion- and/or model-based DQBF∗ solvers being published. Our results
on easier subclasses, in particular the tractability of DQHORN∗, might further
benefit such solvers by allowing them to cut easier subproblems from a larger
computation.
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In this chapter, we present a new approach for preprocessing QCNF∗ formulas
by expanding a selection of universally quantified variables with bounded ex-
pansion costs. We describe a suitable selection strategy which combines cost
estimates with goal orientation by taking into account unit literals which might
be obtained.

In order to reduce the overhead from duplicating existential variables which de-
pend on the universal being expanded, we present a technique to compute com-
pact sets of dependent existentials by taking into account the local connectivity
of variables and their polarity. In the best case, this can reduce the number of
dependent existentials by an arbitrarily large factor in comparison to existing
approaches.

Furthermore, we investigate how Q-resolution can be integrated into our pre-
processing. In particular, resolution is applied specifically on the dependent
existentials to further reduce their number.

Experimental results on well-known problems from the QBFLIB formula col-
lection demonstrate that our preprocessing is very effective on simplifying the
prefixes and can significantly improve the performance of state-of-the-art QBF
solvers.

This chapter extends preliminary results on preprocessing by universal expan-
sion published in [BKB07].
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5.1. Motivation

So far, one of the topics that we have particularly focused on is the expansion
of universal quantifiers. Although repeated application can lead to exponential
blowup in the worst case, universal expansion appears to be typically cheaper
for QCNF∗ formulas than the elimination of existential quantifiers by expan-
sion, Q-resolution or symbolic skolemization. This imbalance between univer-
sal and existential quantification in clausal formulas has been very evident for
the various classes of Horn formulas that we have considered. But besides such
tractable special cases, the addition of universal quantifiers to existentially quan-
tified formulas can still make solving the formulas much more difficult. From a
theoretical viewpoint, it causes a climb to higher levels in the polynomial hier-
archy. And from a practical viewpoint, a purely existentially quantified formula
∃y1...∃ym φ(y,z) can be solved by invoking a SAT solver on the propositional
matrix φ . But the addition of a universal quantifier ∀x generally requires two
calls to the SAT solver. Similarly, a QDPLL-based solver typically needs to
branch for both possible values of x. At the same time, the variable ordering im-
posed by the nesting of the quantifiers must be respected, which severely limits
the effectiveness of look-ahead and variable selection heuristics. Not only search
algorithms are affected in this way, but also the other approaches like symbolic
skolemization, because the arity of the model functions increases when the value
of an existential variable yi depends on the value of an additional universal.

Our idea is therefore to specifically attack the universally quantified variables
in QCNF∗ formulas by universal expansion. While this operation is certainly
exponential in nature for arbitrary QCNF∗, we are going to develop refinements
that make it more manageable. In addition, we are now going to avoid the prob-
lem of exponential growth by not eliminating all universals in the formula. We
suggest a preprocessing by bounded universal expansion which eliminates only
a suitably selected subset of universals with bounded expansion costs. This is
often sufficient to significantly simplify the prefixes of given formulas: a look
at existing encodings, e.g. in the QBFLIB collection [GNT01], confirms that
QCNF∗ instances from various application domains typically have significantly
less universal quantifiers than existentials, and for formulas with multiple alter-
nations of quantifiers, the universal blocks usually tend to be rather short. In this
situation, a relatively small number of expansions can be very effective.
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5.2. Research Goals and Related Work

The main goal of this chapter is to develop in detail the concept of bounded uni-
versal expansion that was suggested in the previous paragraph, in order to turn
it into a powerful preprocessing approach for QCNF∗ formulas. The underlying
idea, which we also want to verify experimentally with a suitable implementa-
tion, is to make it significantly easier for subsequently invoked solvers by first
taking out those universals which are cheap to expand and/or particularly re-
warding. The other universals remain as they are, in the hope that the solvers
might be able to handle them better with a different approach.

To our knowledge, universal expansion has been used successfully in at least
two QBF∗ solvers: QUBOS by Ayari and Basin [AB02] and Quantor by Armin
Biere [Bie05]. QUBOS is not restricted to CNF formulas and can switch to a
dual mode where it only expands existentials by ∃y φ(y)≈ φ(0)∨φ(1). This is
easy to do without the CNF requirement, but we prefer to stay with CNF. On the
one hand, our initial hypothesis about focusing on the universals only applies
to clausal formulas, and on the other hand, we want to avoid a retransformation
after preprocessing, because most solvers still require CNF as well. In addition,
we are going to make use of the specific clause structure for further universal
expansion refinements.

Unlike the bounded expansion that we suggest, both systems ultimately expand
all universals (unless the formula collapses prematurely) and then solve the re-
maining purely existentially quantified formula with an ordinary SAT solver.
While Quantor expands universals from the innermost universal quantifier block
in a prenex formula, QUBOS uses quantifier shifting rules [ETW02, NW01]
like miniscoping by the equivalence ∀x (Ψ(x)∧Γ(x)) ≈ (∀x Ψ(x))∧ (∀x Γ(x))
to drive quantifiers inside the formula. QUBOS then expands quantifiers from
the innermost scopes of the resulting non-prenex formula.

Our idea is to lift the restriction to innermost scopes that both solvers have,
because we will see in the next section that universals which are particularly re-
warding for expansion might also occur further outside in the prefix. While QU-
BOS and Quantor will eventually get to these universals, our bounded expansion
might reach the bound before that happens. To make sure that all rewarding uni-
versals are considered, we extend universal expansion by allowing the selection
of universals from the whole prefix. In order to take advantage of this larger
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degree of freedom, we use a refined scheduling strategy which also takes into
account possible expansion benefits, such as the generation of unit literals.

In addition to the bounding, we attempt to mitigate the exponential nature of
universal expansion by reducing its actual costs. In Sections 3.6 and 4.5, the
expansion of a universal quantifier has required us to duplicate all existentials
which depend on that universal. On the one hand, we suggest to reduce the
number of such dependent existentials by specifically applying Q-resolution on
them before making the expansion, rather than using Q-resolution as an alter-
native to universal expansion, which is what Quantor does. On the other hand,
we want to improve the dependency computation itself, which means we do not
want to treat existentials as being dependent on a universal if they can in fact
be chosen independently. In DQBF∗, we had all dependencies given explicitly,
which was a big advantage. But for QBF∗ formulas, the simple approach of du-
plicating all existentials whose quantifiers occur in a prefix block to the right of
the universal quantifier being expanded is too coarse, especially when expanding
non-innermost universals.

Determining whether an existential variable yi depends on a certain universal
x j in a given formula is equivalent to asking whether the formula has a satisfi-
ability or equivalence model in which the model function fyi does not depend
on x j. The problem can easily be solved in PSPACE if we simply expand x j
(following the procedure given in the upcoming Theorem 5.3.1 on Page 133)
in two different ways, once with duplicating the existential yi, and once with-
out doing so, and then check the equivalence of the two resulting formulas in
polynomial space. On the other hand, it is easy to see that this problem is at
least as difficult as determining the satisfiability of a QBF formula: with an ar-
bitrary QBF formula Φ = Qv1...Qvk φ(v1, ...,vk), we can associate the formula
Ψ := ∀x∃yQv1...Qvk (x∨ y)∧ (¬x∨¬y∨φ(v1, ...,vk)) with new variables x and
y. Then Ψ has a satisfiability model with fy = 1 if and only if Φ is true, which
proves the PSPACE-hardness.

Faced with this high complexity, an important question is whether we can effi-
ciently compute tight supersets of dependent existentials. [Bie05] suggests for
a universal x j from the innermost universal quantifier block to duplicate all in-
nermost existentials which occur in a common clause with x j. Then those exis-
tentials again propagate dependency to all other existentials from the innermost
block that they share a clause with, and so on. In the end, the set of dependent
existentials is given by the transitive closure of this local connectivity relation.
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We extend the idea with three contributions:

1. We generalize it to work with universals from the whole prefix and prove
the correctness of the resulting dependency concept with the help of quan-
tifier shifting [ETW02, NW01].

2. We add the ability to split large universal scopes by miniscoping.

3. We make the important observation that in addition to variable connec-
tivity in common clauses, the polarity of variables can also have a great
influence on dependency. This allows us to prove the correctness of a
stronger dependency concept that can achieve a reduction by an arbitrar-
ily large factor in the best case.

[Ben05b] presents an alternative approach, but without variable polarity (Item 3)
and thus with more redundancy in general. The idea of the approach is to build
a tree-like structure by gradually merging scopes of existential quantifiers. We
will later see how this is related to the computation of local connectivity. The
trees are grown from the existentials to the universals, whereas our approach
propagates dependency from universals to existentials. We argue that the latter
direction is more suitable for our universal expansion approach. It is also un-
clear how quantifier trees could be combined with variable polarity to achieve a
similar level of conciseness.

A result that is very similar to the combination of Items 1 and 3 (i.e. Defini-
tion 5.3.2 together with Theorems 5.3.3 and 5.6.1 below) has been found inde-
pendently and simultaneously with our initial publication [BKB07] by Samer
and Szeider in [SS07]. As explained later in Section 5.6, they essentially use a
different notation where universals can also be called dependent on existentials.

Some of our ideas have already been picked up by recent papers: [LB08a]
presents a generalization to NNF formulas, and [LB08b] introduces a compact
simultaneous representation of dependency sets for all universals in a formula.

Overall, we think that the amount of simultaneous and subsequent work sug-
gests that variable dependencies are indeed a crucial topic in QBF reasoning
that warrants further intensive research.

131



5. Bounded Universal Expansion

5.3. Universal Expansion Refinements

In the previous chapters, the expansion of a universal quantifier in a QBF∗ for-
mula has been defined as the process of duplicating the matrix of the formula
and the dependent existentials:

Qv∀x∃y1...∃ym φ(v,x,y1, ...,ym,z) ≈ Qv∃y(0)1 ...∃y(0)m ∃y(1)1 ...∃y(1)m

φ(v,0,y(0)1 , ...,y(0)m ,z)
∧ φ(v,1,y(1)1 , ...,y(1)m ,z)

We are now going to develop some refinements to this procedure to make it more
powerful and more efficient in practice. While the results in this section (plus a
further refinement in Section 5.6) are crucial to our preprocessing approach, they
can also be applied independently in other contexts. For example, as mentioned
in the previous section, [LB08a] applies some of our ideas to NNF formulas.

5.3.1. Selective Expansion

In existing applications of universal quantifier expansion for QBF∗ formulas
([AB02, Bie05] and Chapter 3), universals have only been eliminated according
to their nesting order, that is, the innermost universal quantifiers had to be ex-
panded first. This is not so much of a problem when all universals are expanded
anyway, be it step-wise and interleaved with other techniques as in [AB02,
Bie05] or at once as in Chapter 3. However, in our preprocessing scenario in
which we only want to eliminate selected individual universal quantifiers, it can
have significant advantages to expand universals that are not in the innermost
universal quantifier block:

• universals from other quantifier blocks may be cheaper to expand. Con-
sider the example Φ = ∀x1∃y1∀x2∀x3∃y2∃y3∀x4∀x5∃y4∃y5 (φ ∧ψ). If Φ

can be rewritten as Φ′ = ∀x1∃y1 (∀x2∃y2∀x4∃y4 φ)∧ (∀x3∃y3∀x5∃y5 ψ),
it is clear that we only have to duplicate φ when expanding x2 and x4,
and analogously for ψ and x3 and x5. That means if |φ | < |ψ|, it should
indeed be cheaper to expand x4 and x2 before x5 and x3. Of course, that
requires detecting the locality of the universals to avoid duplicating the
whole formula matrix. This is discussed in more detail in the next section.
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• some universal block other than the innermost might consist of only a few
quantifiers. By expanding these, the number of quantifier blocks can be
reduced and the formula may become much easier to solve. For example,
if Ψ = ∃y1∃y2∀x1∃y3∀x2∀x3∀x4∃y4∃y5 ψ then we can either expand all
innermost universals x2, x3 and x4 to obtain a formula with only three
quantifier alternations, or we can achieve the same effect by expanding
only x1.

• some universals from inner blocks might occur in short clauses, so that
their expansion quickly leads to valuable unit literals or produces clauses
that subsume longer clauses. Such strategic considerations will be covered
in Section 5.5.

Extending universal expansion to arbitrary quantifier blocks is quite straightfor-
ward: all quantifier blocks that are further right in the prefix must be duplicated
if they are existential and remain unchanged if they are universal.

Theorem 5.3.1. (Selective Universal Quantifier Expansion)
Let Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z) with universal quantifier
blocks Xk = (xk,1, ...,xk,nk) and existential blocks Yk = (yk,1, ...,yk,mk) be a QBF∗

formula, and let the expansion of a universal quantifier ∀xi, j in Φ be the formula

Φ′(z) = Q′ φ(x1,1, ...,xi, j−1,0,xi, j+1, ...,xr,nr ,y1,1, ...,yi−1,mi−1 ,y
(0)
i,1 , ...,y

(0)
r,mr ,z)

∧ φ(x1,1, ...,xi, j−1,1,xi, j+1, ...,xr,nr ,y1,1, ...,yi−1,mi−1 ,y
(1)
i,1 , ...,y

(1)
r,mr ,z)

with the new prefix Q′ that we obtain from the original prefix Q by dropping
∀xi, j and replacing ∃Yk with duplicates ∃Y (0)

k ,Y (1)
k = ∃y(0)k,1...∃y

(0)
k,mk
∃y(1)k,1...∃y

(1)
k,mk

for all k = i, ...,r. Then Φ(z)≈Φ′(z).

Proof:
Let Q→xi, j :=∀X1∃Y1...∀Xi−1∃Yi−1∀xi,1...∀xi, j−1 denote the beginning of the pre-
fix Q up to, but excluding, xi, j. Similarly, let Qxi, j→ be the remainder of Q af-
ter xi, j. Moreover, we abbreviate x|xi=0 := x1,1, ...,xi, j−1,0,xi, j+1, ...,xr,nr and
x|xi=1 := x1,1, ...,xi, j−1,1,xi, j+1, ...,xr,nr .
Applying ∀x Ψ(x)≈Ψ(0)∧Ψ(1) on xi produces the following expansion:

Φ(z)≈ Q→xi, j (Qxi, j→ φ(x|xi=0,y1,1, ...,yr,mr ,z))
∧ (Qxi, j→ φ(x|xi=1,y1,1, ...,yr,mr ,z))
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We must restore the prenex form on the right hand side. This requires consid-
ering the sequence of quantifier blocks in Qxi, j→. If Qxi, j→ = ∀X ′i ∃Yi...∀Xr∃Yr
with a leading universal block X ′i = (xi, j+1...xi,ni), we can use the equivalence
(∀x Ψ(x))∧ (∀x Γ(x))≈ ∀x (Ψ(x)∧Γ(x)) on all universals in X

′
i to move them

to the front:

Φ(z)≈ Q→xi, j∀X ′i (∃Yi...∀Xr∃Yr φ(x|xi=0,y1,1, ...,yr,mr ,z))
∧ (∃Yi...∀Xr∃Yr φ(x|xi=1,y1,1, ...,yr,mr ,z))

In the other case Qxi, j→ = ∃Yi∀Xi+1...∃Yr, we rename all the leading existentials

Yi = (yi,1, ...,yi,mi) into Y (0)
i = (y(0)i,1 , ...,y

(0)
i,mi

) and Y (1)
i = (y(1)i,1 , ...,y

(1)
i,mi

):

Φ(z)≈ Q→xi, j (∃Y (0)
i ∀Xi+1...∃Yr φ(x|xi=0,Y1, ...,Yi−1,Y

(0)
i ,Yi+1, ...,Yr,z))

∧ (∃Y (1)
i ∀Xi+1...∃Yr φ(x|xi=1,Y1, ...,Yi−1,Y

(1)
i ,Yi+1, ...,Yr,z))

Having distinct names allows us to move the existentials to the front:

Φ(z) ≈ Q→xi, j∃y
(0)
i,1 ...∃y

(0)
i,mi
∃y(1)i,1 ...∃y

(1)
i,mi

(∀Xi+1...∃Yr φ(x|xi=0,Y1, ...,Yi−1,Y
(0)
i ,Yi+1, ...,Yr,z))

∧ (∀Xi+1...∃Yr φ(x|xi=1,Y1, ...,Yi−1,Y
(1)
i ,Yi+1, ...,Yr,z))

The procedure continues inductively on ∃Yi...∀Xr∃Yr or ∀Xi+1...∃Yr, respec-
tively, until all quantifiers have been moved to the front.

The proof shows that prenexing plays an important role in our generalized ver-
sion of universal quantifier expansion. In the above formulation, our prenexing
strategy is to keep both copies of an existential quantifier in the same block
as the original quantifier. That means we merge the corresponding quantifier
blocks from both subformulas, but we do not change the relative ordering of the
quantifiers.

There are other prenexing approaches which are more aggressive in shifting
quantifiers: [EST+04] provides a detailed comparison of different strategies for
prenexing in general. However, in our unique scenario of universal expansion,
our less intrusive prenexing that keeps the quantifier ordering intact has several
advantages. On the one hand, it is very fast, because no further computations
are necessary and because the duplication of dependent existentials can be per-
formed in-place without moving around in the prefix. On the other hand, we
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are not dealing with arbitrary non-prenex formulas, but with two copies of a for-
mula that has already been in prenex form. Assuming that this prenexing has
been carried out in an optimal way by the creator of the original formula, the
expansion of a single universal will not provide much potential for further im-
provement. Finally, while the comparison in [EST+04] demonstrates that the
choice of prenexing strategy can have a significant performance impact, there
does not seem to exist a “silver bullet” strategy that performs best for the major-
ity of solvers, and we do not want to specially tune-up our preprocessor towards
individual solvers.

5.3.2. Variable Connectivity and Dependencies

Usually, not all clauses of a QCNF∗ formula are affected by the expansion of a
universal. An implementation of the algorithm suggested by the previous theo-
rem will only have to touch clauses which contain either the expanded univer-
sal x itself or one of the existentials that must be duplicated. This observation
implies that the size of the expansion depends in particular on the number of
existential variables which are dominated by x. That makes it important to trim
the set of these dominated existentials as much as possible.

The example formula Φ = ∀x1∃y1∀x2∀x3∃y2∃y3∀x4∀x5∃y4∃y5 (φ ∧ψ) from the
preceding section that we have assumed to be the linearization of a non-prenex
formula Φ′ = ∀x1∃y1 (∀x2∃y2∀x4∃y4 φ)∧ (∀x3∃y3∀x5∃y5 ψ) clearly demon-
strates that the ordering of the prefix alone provides only an upper bound for the
set of dependent existentials: from the prefix in Φ, it appears that x2 dominates
all subsequent existentials y2, ...,y5, but by examining the matrix of the formula,
we can discover that x2 does not occur in common clauses with y3 and y5 due to
the original non-prenex structure Φ′. The locality of x2 therefore implies that y3
and y5 do not depend on x2.

The idea of reducing variable dependencies by examining how variables are ac-
tually connected in common clauses has been introduced in [Bie05], but only for
expansion from the innermost universal quantifier block. The paper informally
defines a local connectivity relation between the expanded universal x and an ex-
istential y from the innermost existential quantifier block that holds if and only if
both occur in the same clause. The set of dependent existentials is then given by
the transitive closure of local connectivity to x, taking into account only x itself
and the existentials from the innermost block.
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For the expansion of universals from arbitrary quantifier blocks, we need to gen-
eralize the above definition of connectivity. In our formulation, connectivity
is propagated by the expanded universal x and existentials from all quantifier
blocks that occur further right in the prefix, but it is not propagated by other
universal quantifiers.

Definition 5.3.2. (Variable Connectivity and Dependent Existentials)
We denote a variable v locally connected to another variable w in a QCNF∗

formula if and only if both occur in a common clause. We then write v∼ w, and
we let this relation ∼ be reflexive.

Given a universal variable xi, j from the i-th universal quantifier block in a prefix
of the form Q = ∀X1∃Y1...∀Xr∃Yr, we define

D(0)
xi, j := {y ∈ Yi∪ ...∪Yr | y∼ xi, j}

D(k+1)
xi, j := {y ∈ Yi∪ ...∪Yr | y∼ y′ for some y′ ∈ D(k)

xi, j}, k ≥ 0

Dxi, j :=
⋃
k

D(k)
xi, j

and call the set Dxi, j the dependent existentials of xi, j.

Consider the following example:

Ψ(z) = ∀x1,1∀x1,2∃y1,1∃y1,2∀x2,1∃y2,1∃y2,2

(x1,1∨ x1,2∨¬y1,1)∧ (x1,2∨ y2,2)∧
(¬x1,1∨ y1,2)∧ (y1,1∨ x2,1∨ y2,1)∧ (y1,1∨¬y2,1)

Then Dx1,1 = {y1,1,y1,2,y2,1}, Dx1,2 = {y1,1,y2,1,y2,2} and Dx2,1 = {y2,1}.

A simple algorithm for computing dependencies iteratively as in the above def-
inition is provided in Listing 5.1. The algorithm first visits all clauses C that
contain positive or negative literals over the given universal x and collects all
existentials y with x < y that occur in such a clause C. In the definition, the set of
these existentials is called D(0)

x . Then the process is repeated for all y ∈ D(0)
x by

searching in unvisited clauses C with y∈C or ¬y∈C for more existentials in the
scope of x, and so on. For a single universal, this algorithm needs time O(|Φ|) on
a formula of length |Φ| that is given in a suitable CNF data structure [KBL99].
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Listing 5.1: Computation of dependent existentials

Input Φ ∈ QCNF∗, universal variable x in Φ;

Dx = /0;
pending = {x};
while (pending 6= /0) {

v = pending.removeElement();
for each {C ∈Φ | v ∈C or ¬v ∈C}
if (C not marked as visited) {

mark C as visited;
for each {y ∈ y | (y ∈C or ¬y ∈C) and x < y}
if (y not marked as seen) {
mark y as seen;
Dx = Dx ∪ {y};
pending = pending ∪ {y};

}
}

}

Output Dependent existentials Dx as in Definition 5.3.2.

Rather than performing this computation repeatedly for each universal in the
input formula, a very recent paper by Biere and Lonsing [LB08b] suggests an
extension of these ideas that can reuse dependencies of one universal when com-
puting dependencies of another universal, which leads to a simultaneous repre-
sentation of dependencies for all universals in the formula.

Theorem 5.3.3. Let Φ(z) = Q φ(z) be a formula in QCNF∗ that has the prefix
Q = ∀X1∃Y1...∀Xr∃Yr, and let ∀xi, j be a quantifier from the i-th universal block.
Then Φ has an equivalence model M = ( fy1,1 , ..., fyr,mr ) such that fyk,l does not
depend on xi, j if yk,l 6∈ Dxi, j .

Proof:
We only have to show that fyk,l can be chosen independently of xi, j for every
yk,l ∈ Yi∪ ...∪Yr \Dxi, j .
Let φ D denote the conjunction of all clauses in φ which contain at least one
variable in Dxi, j . Without loss of generality, we assume that Φ is forall-reduced,
so that all clauses with xi, j or ¬xi, j are also in φ D. Let φ I be the conjunction
of the other clauses. Using the notation from the proof of Theorem 5.3.1 in the
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previous section, we write Q→xi, j := ∀X1∃Y1...∀Xi−1∃Yi−1∀xi,1...∀xi, j−1 for the
beginning of the prefix Q up to, but excluding, xi, j and Qxi, j→ for the remainder
of Q after xi, j. Then Φ has the form Φ = Q→xi, j∀xi, jQxi, j→ φ D∧φ I .
We have Qxi, j→ = Q′∃Yr with the innermost block being existential. Definition
5.3.2 implies that all existentials in φ I are either bound in Q→xi, j , or they only
occur within clauses in φ I . That means each existential quantifier ∃yr,s in ∃Yr
belongs to one of two classes: either yr,s ∈ Dxi, j and yr,s occurs only in φ D,
or yr,s 6∈ Dxi, j and yr,s occurs only in φ I . Accordingly, we can split ∃Yr into
two distinct quantifier blocks ∃Y D

r and ∃Y I
r which we can distribute onto both

subformulas φ D and φ I : Φ≈ Q→xi, j∀xi, jQ′ (∃Y D
r φ D)∧ (∃Y I

r φ I).
Now Q′ = Q′′∀Xr with innermost universal block Xr (without loss of generality,
let i < r), and miniscoping ∀x (Ψ(x)∧Γ(x))≈ (∀x Ψ(x))∧ (∀x Γ(x)) allows us
to apply ∀Xr to both subformulas:

Φ≈ Q→xi, j∀xi, jQ′′ (∀Xr∃Y D
r φ

D)∧ (∀Xr∃Y I
r φ

I)

Continuing the above process of distributing quantifiers, we ultimately obtain a
non-prenex formula Φ≈Q→xi, j∀xi, j (QD φ D)∧(QI φ I), and with xi, j 6∈ vars(φ I),
it follows that Φ≈ Q→xi, j (∀xi, jQD φ D)∧ (QI φ I). Considering that existentials
yk,l ∈Yi∪ ...∪Yr \Dxi, j occur only within φ I , it is clear that such yk,l have equiv-
alence model functions that do not depend on xi, j.

The proof illustrates that Definition 5.3.2 provides a way to recover non-prenex
structure that is hidden in a prenex formula. We immediately have the following
corollary:

Corollary 5.3.4. When expanding a universal quantifier ∀xi, j from the i-th uni-
versal quantifier block (1 ≤ i ≤ r) of a forall-reduced QCNF∗ formula, we only
need to duplicate (for xi, j = 0 and xi, j = 1) the dependent existential variables
in Dxi, j and the clauses in which these existentials occur.

This result has an interesting consequence for modeling problems in QCNF∗:
universal expansion makes it relatively cheap to introduce locally used universal
quantifiers. This allows natural encodings for various problems, in particular for
those with an inherent non-prenex structure, while at the same time, our pre-
processing can mitigate for the subsequent solver the overhead of having many
universal variables. The QBFLIB formula collection [GNT01] includes several
well-known families of encodings with large numbers of local universal quanti-
fiers, e.g. the Adder suite [AB02] or the Mneimneh-Sakallah encodings [MS04].
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5.3.3. Splitting Universal Scopes

In the preceding Definition 5.3.2, we obtain for a given universal xi, j the set of
dependent existentials Dxi, j by a stepwise propagation of dependency. Starting
with clauses that contain positive or negative xi, j, dependency is extended to
all variables in Yi ∪ ...∪Yr that occur in the same clause, and then from these
existentials to other existentials in Yi∪ ...∪Yr that they share a clause with, and so
on. If we consider all quantified variables as vertices in a graph and let the local
connectivity relation ∼ determine the graph’s edges, every existential u ∈ Dxi, j

is connected to xi, j by an undirected path u∼ v1, v1 ∼ v2, ..., vk−1 ∼ vk, vk ∼ xi, j
with v1, ...,vk ∈ Dxi, j .

Now if we consider a pair of two existentials u,w ∈ Dxi, j , it is clear that they
are connected to each other by a path from u to xi, j and then from xi, j to w. An
interesting question is whether there also exists a path between u and w with-
out passing through xi, j. In general, this is not the case, as the simple example
Φ= ∀x∃y1∃y2∃y3 (x∨y1)∧(¬y1∨y2)∧(¬x∨y3) shows. Here, Dx = {y1,y2,y3}
and y2 ∼ y1, y1 ∼ x and x ∼ y3, such that y2 and y3 are connected by a path
through x. But neither y1 ∼ y3 nor y2 ∼ y3, so there is no path between y2
and y3 without passing through x. We can, however, rewrite this example with
the familiar miniscoping equivalence ∀x (Ψ(x)∧Γ(x))≈ (∀x Ψ(x))∧ (∀x Γ(x))
that we have already used extensively in the previous sections. Then we have
Φ≈ (∀x∃y1∃y2 (x∨ y1)∧ (¬y1∨ y2))∧(∀x∃y3 (¬x∨ y3)), which we can rewrite
as Φ ≈ ∀x(1)∃y1∃y2∀x(2)∃y3 (x(1) ∨ y1)∧ (¬y1 ∨ y2)∧ (¬x(2) ∨ y3). Obviously,
Dx(1) = {y1,y2}, Dx(2) = {y3} and y1 ∼ y2 , so all existentials in the same depen-
dency set are connected without passing through the corresponding universal.

We now show that we can always achieve this property by splitting universal
scopes with the above miniscoping ∀x (Ψ(x)∧Γ(x)) ≈ (∀x Ψ(x))∧ (∀x Γ(x)).
We start with a formal definition and some basic results.

Definition 5.3.5. (Existentially Connected Dependencies)
For a universal quantifier ∀x in a QCNF∗ formula Φ, let Dx be the set of de-
pendent existentials as in Definition 5.3.2. Then we call two variables u,w ∈ Dx
existentially connected with respect to Dx if and only if u ∼ w or there exist
yi1 , ...,yik ∈ Dx with u∼ yi1 , yi1 ∼ yi2 , ..., yik−1 ∼ yik and yik ∼ w in Φ. We write
u∼∗Dx

w for such variables u and w that are connected within Dx.
We say that Dx itself is existentially connected if and only if every pair u,w∈Dx
is existentially connected in Dx.
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If u ∼∗Dx
v and v ∼∗Dx

w within the same dependency set Dx, it clearly follows
that u ∼∗Dx

w. With the reflexivity and symmetry of the underlying connectivity
relation ∼, we immediately have the following proposition.

Proposition 5.3.6. For all dependency sets Dx, existential connectivity ∼∗Dx
is

an equivalence relation.

A useful property of existentially connected dependency sets is that two such
sets in a QCNF∗ formula are either disjoint, or one is entirely contained within
the other.

Lemma 5.3.7. Let Φ(z)=∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr,Y1, ...,Yr,z) be a QCNF∗

formula, and let ∀xi, j and ∀xk,l be a pair of universal quantifiers from quan-
tifier blocks Xi and Xk with i ≤ k and dependent existentials D1 := Dxi, j and
D2 := Dxk,l .

If D1 is partitioned by ∼∗D1
into equivalence classes D(1)

1 , ...,D(p)
1 (p = 1 if D1 is

fully existentially connected) and D2 is existentially connected, we have

D1∩D2 = /0 or D2 ⊆ D(s)
1 for some 1≤ s≤ p .

Proof:
For |D2| ≤ 1, the result is trivially true. Otherwise, let u,w ∈ D2, u 6= w, be
a pair of distinct existentials in D2. If u,w 6∈ D1 for every such pair, we have
D1∩D2 = /0. Else let u ∈D(s)

1 without loss of generality, and we must show that
w ∈ D(s)

1 as well. Since D2 is existentially connected, there exist v1, ...,ve ∈ D2
with u∼ v1, v1 ∼ v2, ..., ve−1 ∼ ve and ve ∼ w. From i≤ k, it follows that these
existentials v1, ...,ve are also in the scope of ∀xi, j. With u ∈ D1 and the above
chain of connectivity, if follows from Definition 5.3.2 that {w,v1, ...,ve} ⊆ D1.
Then Definition 5.3.5 implies that u and w are existentially connected u ∼∗D1

w

within D1, and thus u,w ∈ D(s)
1 , because D(s)

1 is an equivalence class of D1 with
respect to ∼∗D1

.

Theorem 5.3.8. For every QCNF∗ formula Φ(z), there exists an equivalent for-
mula Φ′(z) ∈ QCNF∗ in which the dependency sets Dxi, j are existentially con-
nected for every universal quantifier ∀xi, j in Φ′, and Φ′ can be computed deter-
ministically in polynomial time.
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Notice that without the requirement that Φ′ can be computed in deterministic
polynomial time and therefore has polynomial length, the theorem could be ful-
filled in a trivial way by simply expanding all universal quantifiers in Φ.

Proof:
The proof is by induction on the number of universal quantifiers in the original
formula. It is based on the idea of splitting universal scopes that are not existen-
tially connected by duplicating the corresponding quantifiers as in the example
at the beginning of this section.

For the induction base, let Φ(z) = ∀x∃y1...∃ym φ(x,y1, ...,ym,z) be a formula
with a single universal. Without loss of generality, we assume that ∀x is the out-
ermost quantifier, because leading existentials can simply be considered as free
variables. If the dependency set Dx is not existentially connected, ∼∗Dx

parti-

tions Dx into existentially connected equivalence classes D(1)
x , ...,D(k)

x with k≥ 2.
Then every clause in φ contains existentials from at most one of these partitions,
and we can also partition φ into subformulas φ (0), ...,φ (k): for 1 ≤ i ≤ k, φ (i)

is the conjunction of all clauses that have at least one literal over existentials in
D(i)

x , and φ (0) collects all clauses without any literals over existentials in Dx. Let
{y(i)1 , ...,y(i)mi} := D(i)

x and {y(0)1 , ...,y(0)m0 } := {y1, ...,ym}\Dx, then we have

Φ(z)≈ ∀x
∧

i=0...k

(∃y(i)1 ...∃y(i)mi φ
(i)(x,y(i)1 , ...,y(i)mi ,z)) .

With ∀x (Ψ(x)∧Γ(x))≈ (∀x Ψ(x))∧ (∀x Γ(x)), we finally obtain:

Φ(z) ≈
∧

i=0...k(∀x∃y
(i)
1 ...∃y(i)mi φ (i)(x,y(i)1 , ...,y(i)mi ,z))

≈ ∀x(0)...∀x(k)∃y(0)1 ...∃y(k)mk

∧
i=0...k φ (i)(x(i),y(i)1 , ...,y(i)mi ,z)

Clearly, Dx(i) = D(i)
x for 1 ≤ i ≤ k by construction. In addition, Dx(0) = /0, so

we might discard x(0) by universal reduction. The formula above can easily be
computed in polynomial time: for every clause over positive or negative x, we
compute a dependency set as in Definition 5.3.2, but without considering any
other clauses over x. Let l be the number of clauses over x, then we obtain
dependency sets D̃1, ..., D̃l , and for all 1 ≤ j ≤ l, we have D̃ j = D(i)

x for some
1 ≤ i ≤ k, which means we find (possibly multiple copies of) the existentially
connected partitions D(i)

x of Dx.
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For the induction step, let Φ(z) = ∀xQ φ(x,z) be a formula where ∀x is the out-
ermost universal quantifier. By the induction hypothesis, Q φ(x,z) is equivalent
to some Q′ φ ′(x,z) ∈ QCNF∗ with existentially connected dependencies. Then
Φ(z) ≈ ∀xQ′ φ ′(x,z), and if Dx is not existentially connected in Q′ φ ′, we par-
tition Dx as above into equivalence classes D(1)

x , ...,D(k)
x and let D(0)

x contain all
other existentials in Q′ that are not in Dx. From Lemma 5.3.7, it now follows
that for every universal x′ in Q′, we either have Dx′ ∩Dx = /0 or Dx′ ⊆ D(i)

x for
some i with 1≤ i≤ k. This allows us to partition Q′ φ ′ as in the induction base.
For 1≤ i≤ k, we let Q′(i) be the subsequence of Q′ that contains only those ex-
istential quantifiers that are referenced in D(i)

x and those universal quantifiers ∀x′

with Dx′ ⊆ D(i)
x . Similarly, Q′(0) contains those existentials that belong to D(0)

x
(i.e. those that are not in Dx) and those universals ∀x′ with Dx′ ∩Dx = /0. Due to
the aforementioned Lemma 5.3.7, every quantifier in Q′ belongs to exactly one
subsequence Q′(i), and for every universal quantifier ∀x′ in a subsequence Q′(i),
all existentials Dx′ that it dominates are also in the same subsequence Q′(i). Thus

Φ(z)≈ ∀x
∧

i=0...k

(
Q′(i) φ

′(i)(x,z)
)

where we denote by φ ′(i) the conjunction of all clauses in φ ′ that contain at least
one literal over existentials in D(i)

x . The remainder of the proof is now the same
as in the induction base:

Φ(z)≈ ∀x(0)...∀x(k)Q′
∧

i=0...k

φ
′(i)(x(i),z)

by distributing ∀x over the conjunction, so that it is split up into k distinct uni-
versal quantifiers that have existentially connected dependencies each.

The algorithm outlined in the proof leaves the duplicated universal quantifiers at
the same positions as the original quantifiers, and the existential blocks are not
modified at all. With Lemma 5.3.7, we obtain the following corollary.

Corollary 5.3.9. For every Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(x,y,z) ∈ QCNF∗, it is
possible to compute in deterministic polynomial time an equivalent QCNF∗ for-
mula Φ′(z) = ∀X ′1∃Y1...∀X ′r∃Yr φ ′(x′,y,z), such that

Dx′i, j
∩Dx′k,l

= /0 or Dx′k,l
⊆ Dx′i, j

for every pair of universal quantifiers ∀x′i, j and ∀x′k,l from quantifier blocks X ′i
and X ′k with i≤ k.
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Before we present an example and discuss the meaning of this result, we would
like to have a look at a possible implementation of such a transformation from
Φ ∈ QCNF∗ to Φ′ ∈ QCNF∗ with existentially connected dependencies. The
actual task is to find the existentially connected partitions of the dependent exis-
tentials for each universal variable x. Listing 5.2 shows how the original depen-
dency computation from Listing 5.1 that was presented in Section 5.3.2 can be
slightly modified, so that the reachable existentials are computed separately for
each single clause over x or ¬x. The trick is to check whether such a clause has
already been reached from another clause over x or ¬x earlier in the process. If
this is the case, both clauses must belong to the same existentially connected par-
tition of Dx, and a repeated search for reachable existentials is unnecessary. That
way, it is still sufficient to inspect every clause in the input formula Φ at most
once for each universal x in Φ. In total, O(n · |Φ|) clauses are visited to perform
this transformation on a formula of length |Φ| with n universal quantifiers.

Consider the following example:

Ψ(z) = ∀x1,1∀x1,2∃y1,1∀x2,1∃y2,1∃y2,2∃y2,3

(x1,1∨ x1,2∨¬y1,1)∧ (x1,2∨ y2,3)∧ (y1,1∨¬x2,1∨ y2,1)

(¬x1,1∨ y2,2)∧ (y1,1∨ x2,1∨¬y2,2)

Here, x1,1 occurs within two clauses. The algorithm starts by considering only
the first one and includes y1,1 in the set of dependent variables. The occurrences
of y1,1 lead to the third and fifth clause, which adds y2,1 and y2,2. Following these
variables does not reveal any additional dependent existentials, so we obtain:

D(1)
x1,1 = {y1,1,y2,1,y2,2}

Now, we consider the second occurrence of x1,1, which is in the fourth clause
(¬x1,1 ∨ y2,2). But y2,2 has already been found in the previous step, so there is
no second partition of x1,1. For x1,2, starting with the first clause also yields:

D(1)
x1,2 = {y1,1,y2,1,y2,2}

x1,2 also occurs in the second clause, which is not reachable from the first clause:

D(2)
x1,2 = {y2,3}

In the last step, the occurrence of x2,1 in the third clause leads to

D(1)
x2,1 = {y2,1} .
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Listing 5.2: Computation of dependencies with existential connectivity

Input Forall−reduced Φ ∈ QCNF∗, universal variable x in Φ;

k = 0;
for each {C ∈Φ | x ∈C or ¬x ∈C}
if (C not marked as visited) {

mark C as visited;
k++;

D(k)
x = /0;

pending = /0;
for each {y ∈ y | (y ∈C or ¬y ∈C) and x < y} {

mark y as seen;
pending = pending ∪ {y};

}
while (pending 6= /0) {

v = pending.removeElement();

D(k)
x = D(k)

x ∪ {v};
for each {C ∈Φ | v ∈C or ¬v ∈C}
if (C not marked as visited) {

mark C as visited;
for each {y ∈ y | (y ∈C or ¬y ∈C) and x < y}

if (y not marked as seen) {
mark y as seen;
pending = pending ∪ {y};

}
}

}
}

Output Dependent existentials in partitions D(1)
x , ...,D(k)

x .

Notice that y1,1 is not in the scope of x2,1. From the fifth clause, we get:

D(2)
x2,1 = {y2,2}

Consequently, the original formula is equivalent to the following:

Ψ′(z) = ∀x(1)1,1∀x
(1)
1,2∀x

(2)
1,2∃y1,1∀x(1)2,1∀x

(2)
2,1∃y2,1∃y2,2∃y2,3

(x(1)1,1∨ x(1)1,2∨¬y1,1)∧ (x(2)1,2∨ y2,3)∧ (y1,1∨¬x(1)2,1∨ y2,1)

(¬x(1)1,1∨ y2,2)∧ (y1,1∨ x(2)2,1∨¬y2,2)
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5.3. Universal Expansion Refinements

In addition, it would be possible reorder the prefix of Ψ′, e.g. by moving ∀x(2)1,2
further to the right, but we will later see that for our preprocessing purposes, it
is usually best to keep the existing ordering.

Corollary 5.3.9 can be understood as follows: it implies that the dependencies in
Φ′ can be represented as a dependency tree in which Y = Y1∪ ...∪Yr is the root
and the other nodes are the dependency sets for the universal variables in Φ′. Let
the first index of a universal indicate the number of the quantifier block. Then the
tree can be constructed in such a way that a node u = Dx′k,l

is a child of another

node v = Dx′i, j
if and only if (i, j) is the largest index1 with (i, j) < (k, l) and

Dx′k,l
⊆Dx′i, j

. All nodes without parent are connected to the root. For the example
from the last paragraph, we obtain the dependency tree shown in Figure 5.1.

},,,{ 3,22,21,21,1 yyyyY =

},,{ 2,21,21,1

)1(

1,1
yyyDx = }{ 3,2

)2(

2,1
yDx =

},,{ 2,21,21,1

)1(

2,1
yyyDx =

}{ 2,2

)2(

1,2
yDx =}{ 1,2

)1(

1,2
yDx =

Figure 5.1.: Example of a dependency tree after splitting universal scopes

In [Ben05b], Benedetti has presented an algorithm to extract from a QCNF for-
mula Φ a tree-shaped prefix, called a quantifier tree, to recover structural infor-
mation that might have been lost during the prenexing of Φ. Interestingly, it is
possible to extract from these quantifier trees the same dependency information
as with our splitting of universal scopes. The reason is that both approaches
are based on miniscoping ∀x (Ψ(x)∧Γ(x)) ≈ (∀x Ψ(x))∧ (∀x Γ(x)), but this

1We define (i, j)< (k, l) to hold if and only if either i < k or i = k, j < l.
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5. Bounded Universal Expansion

is applied in very different ways in the two algorithms, which makes the sim-
ilarity difficult to see: Benedetti starts with individual existentially quantified
variables and gradually merges their scopes, creating corresponding universal
nodes as required. Our approach works the other way round by starting with
occurrences of universal variables, from which it then propagates dependency to
locally connected existentials. We claim that the latter direction from universals
to existentials is more suitable for universal expansion. In particular, we do not
have to build the whole quantifier tree to compute the dependencies for a single
universal before expanding it.

Most importantly, we will present in Section 5.6 a powerful refinement of local
connectivity that takes into account variable polarity and can thus reduce the
cardinality of dependencies by an arbitrarily large factor in the best case. While
this idea extends our approach in a very natural manner, we do not see an obvious
way to combine it with Benedetti’s quantifier trees. As an additional benefit, our
work provides formal proofs, which are not given in [Ben05b].

We have already pointed out that Corollary 5.3.9 has the helpful property of
leaving the structure of the prefix intact, so we can undo universal splits after the
preprocessing is finished and merge the remaining partitions of universal quan-
tifier scopes back into one common universal scope. This guarantees that the
preprocessing will never increase the number of universal quantifiers in a for-
mula. Splitting of universal scopes is particularly beneficial in cases where all
remaining universals have very large dependencies and are therefore too expen-
sive to expand as a whole. Then we can try to split universals into partitions
that are small enough for expansion and/or contain lots of short clauses that
provide valuable unit literals after an expansion. But the number of universals
is only guaranteed to decrease when all partitions of a universal scope are ex-
panded. That means we should first try to expand universal scopes as they are
without splitting. This is no problem with our approach, since we can freely
choose between the algorithm without existential connectivity from Listing 5.1
(Page 137) and the one from Listing 5.2 above that considers existential connec-
tivity. In Benedetti’s quantifier tree algorithm on the other hand, universals with
multiple existentially connected partitions of dependent existentials are always
duplicated by miniscoping.
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5.4. Bounded Expansion for Preprocessing

5.4. Bounded Expansion for Preprocessing

Even when the locality of universals is observed and all dependencies are re-
duced accordingly, repeated application of universal expansion can easily lead
to rapid formula growth. The idea of our preprocessing is to perform universal
expansion as often as possible within a given upper bound for the growth of the
formula. More precisely, for a constant bound βexp ≥ 1, we attempt to keep the
length of the expanded formula below βexp · |Φ|, where Φ is the original input
formula (after some initial simplifications as described below). Many state-of-
the-art QBF∗ solvers appear to be very sensitive to the length of formulas, even
in cases where longer formulas are structurally easier than shorter ones (see the
experimental results in Section 5.7), so it is probably a good idea to allow the
preprocessing output to grow only by a rather small factor. In our experiments,
we have found values of βexp ≈ 2 to work well.

Another reason for choosing tight values of βexp is that we want to apply uni-
versal expansion only as long as it appears worthwhile, that means as long as
expanding a universal in the formula appears to be cheaper than the effort of
handling that universal in the subsequently called solver. We attempt to achieve
this by first expanding those universals which are estimated to be cheap to ex-
pand (see Section 5.5), and we terminate the preprocessing when there are no
more universals left with estimated expansion costs low enough to stay below
the threshold. If that threshold is low, universals that are expensive to expand
will never be chosen, because the bound will already have been reached after
expanding some of the cheaper universals. Listing 5.3 shows the basic struc-
ture of the preprocessor’s main loop and illustrates where the expansion bound
is applied. More details on the variable selection will be given in the next sec-
tion. For completeness, we have also included the reduction of dependencies by
resolution, which will be discussed in Section 5.6.

In Section 2.4, we have described various techniques for simplifying quanti-
fied Boolean formulas. Expanding a universally quantified variable may open
up possibilities for such simplifications. For example, expanding x in a clause
(x∨ y∨w) containing an existential y and some other literals w can turn y into
a pure literal if x = 1 and this clause is the only one in which y occurs posi-
tively. Or if w = /0, which means the clause is in fact binary, we obtain a new
unit literal y in the case that x = 0. By performing these simplifications, we
can reduce the actual costs of universal expansion. We have thus included the
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Listing 5.3: Bounded expansion preprocessing: main loop

Input Φ ∈ QCNF∗ and expansion bound βexp ≥ 1;

simplify Φ;
Φexp = Φ;
expansionPossible = true;
while (expansionPossible) {

choose universal x with smallest predicted costs cx;
if ((x 6= null) && (|Φexp|+ cx ≤ βexp · |Φ|)) {

reduce dependencies Dx by resolution;
expand x in Φexp according to dependencies Dx;
simplify Φexp;

} else expansionPossible = false;
}

Output Preprocessed formula Φexp ≈Φ;

standard simplifications from Section 2.4 that are typically performed by QBF∗

solvers: unit propagation, pure literal elimination, universal reduction, detection
of dual binary clauses and subsumption checking. In Section 5.6, we will add
the elimination of existentially quantified variables by Q-resolution to this tool
set.

We apply the simplifications in a circular fashion where one simplification rule
may trigger the application of another rule, until we reach closure. Initially,
we attempt to simplify the whole input formula. Later, we check for specific
simplifications as necessary. For the initial simplification, universal reduction is
probably the most important operation and allows us to assume for the remaining
process that all clauses are cleansed from trailing universal variables which do
not dominate any existentials in the same clause. Whenever we later modify
clauses or add new ones, we will make sure they are forall-reduced as well.

5.5. Variable Selection

The results from Section 5.3 give us lots of possibilities as to what we can ex-
pand: universal quantifiers from the whole prefix can be chosen, and even ex-
istentially connected partitions of a single universal scope can be expanded in-
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dividually. But at the same time, the bound from the previous section must be
observed in order to prevent excessive formula growth, which makes it usually
impossible to expand all universals. It is thus crucial to the success of the pre-
processing to make good choices for the universals to be expanded.

5.5.1. Expansion Costs and Selection Strategy

An obvious measurement to determine which expansions to make is to consider
the possible growth of the formula. Each expansion of a universal xi produces
expansion costs cxi = |Φ′| − |Φ|, where |Φ| is the size of the current formula
before the expansion and |Φ′| the size of the resulting formula. When consider-
ing an expansion sequence of universals xi1 , ...,xik , we face the problem that the
costs for the last step are defined with respect to the formula that results from
expanding xi1 , ...,xik−1 first. This makes the expansion of xik very hard to predict
without actually performing the whole sequence of preceding steps. The reason
is that multiple expansions are not independent of each other: expanding one
universal xi might require duplicating clauses that are also in the dependency
scope of another universal x j, so that the costs of expanding x j increase due to
the prior expansion of xi. Consider, for example, a formula of the form

Φ = Q∀xi∃yk∀x j∃ylQ̃ ϕ ∧ (xi∨ yk ∨w)∧ (yk ∨ yl)∧ (x j ∨ yl ∨ w̃)

where Q and Q̃ are arbitrary sequences of quantifiers, ϕ is some subformula, and
w and w̃ are disjunctions of some literals. Then yk,yl ∈Dxi , so the clause (yk∨yl)

must be duplicated into (y(0)k ∨ y(0)l ) and (y(1)k ∨ y(1)l ) when xi is expanded. But

y(0)l and y(1)l are then in Dx j , so when x j is expanded, we end up with four copies

of this clause: (y(0)k ∨ y(0,0)l ), (y(0)k ∨ y(0,1)l ), (y(1)k ∨ y(1,0)l ) and (y(1)k ∨ y(1,1)l ). Had
we only expanded x j, but not xi, there would have been only two copies of
the clause, which means the expansion costs cx j |xi of expanding x j after having
already expanded xi are more expensive by at least four literals (two copies of
the binary clause). In the example, the same is also true for expanding xi after
x j. Instead of expanding both xi and x j, it might have been better to only expand
the cheaper of the two, say xi, but then a different universal xq. That one could
even be more expensive than x j, that means cx j < cxq , but the combined costs
might still be lower, so that cxq|xi < cx j |xi .

The problem of mutual dependencies between multiple expansion steps is ag-
gravated by the influence of simplifications. We have seen in the last section
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that universal expansion can produce unit and pure literals, allow subsumption
of clauses, etc. Clearly, these simplifications can significantly affect subsequent
expansions, but they are also very hard to predict in advance due to the nature
of (quantified) Boolean satisfiability problems. This makes it very unlikely that
there is an efficient algorithm for determining the actual costs of expanding a
series of multiple quantifiers without really performing all those expansions and
the corresponding simplifications. Consequently, we cannot expect to find an
optimal expansion schedule. This is in particular unavoidable if we consider
that our preprocessor should typically consume much less computing time than
a subsequently invoked full-blown solver.

[Bie05] suggests to schedule expansions according to a greedy heuristic that
picks the universal with the lowest one-step expansion costs. This universal is
then expanded and the resulting simplifications are carried out, and then again,
the universal with the lowest costs is determined, etc. By making choices in such
a stepwise fashion, it is no longer necessary to consider combined expansion
costs cxi|x j1 ,...,x jk

. Intuitively, this appears to be a reasonable strategy, although
no further justification is given in the paper. We now show that this greedy
heuristic does indeed produce schedules that are optimal if we exclude simpli-
fications and consider only formulas with existentially connected dependencies.
The latter requirement can be satisfied in polynomial time for all QCNF∗ formu-
las by virtue of Theorem 5.3.8.

In the following, we use some helpful notation to describe occurrences of vari-
ables and literals. For given Φ ∈ QCNF∗, we let C(l) := {C | C ∈Φ and l ∈C}
denote the set of clauses that contain the literal l. Similarly, for a variable v,
we let C±(v) := C(v)∪C(¬v) be the set of clauses that contain a positive or
negative literal over v. Furthermore, we let C(L) :=

⋃
l∈L C(l) for sets of literals

and C±(V ) :=
⋃

v∈V C±(v) for sets of variables. Let C be a set of clauses, then
ΣC := Σγ∈C |γ| denotes the sum of the sizes of all clauses in C .
Consider the example formula Φ = ∀x1∃y1∃y2 (x1 ∨¬y2)∧ (¬y2 ∨ y1)∧¬y1.
Then we have, e.g., ΣC(y1) = 2 and ΣC±(y1) = 3. Also, ΣC±({y1,y2}) = 5,
because C±({y1,y2}) = {(x1∨¬y2),(¬y2∨ y1),(¬y1)}.
Finally, for a set U of universal variables, we let

dupΦ(U) := ∑
C∈Φ

|C| ·
(

2|{u |u∈U,C∈C±(Du)}|−1
)

be the costs of duplicating in a QCNF∗ formula Φ every clause C ∈ Φ as often
as it is dominated by one of the universals in U (cf. Corollary 5.3.4).
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Theorem 5.5.1. A greedy algorithm can determine for every Φ ∈ QCNF∗ with
universal quantifiers ∀x1, ...,∀xn and existentially connected dependencies a set
{xi1 , ...,xik} with maximum k such that

dupΦ({xi1 , ...,xik})≤ β · |Φ|

for a given constant β . In the l-th step (l ≥ 1), the universal xil ∈ {x1, ...,xn} \
{xi1 , ...,xil−1} that has the lowest weight w(xil ) := dupΦ({xil}∪{xi1 , ...,xil−1})
is chosen. If w(xil ) is smaller than the bound, xil is added to the solution, and
another step is performed. Otherwise, {xi1 , ...,xil−1} is the final solution.

Proof:
Consider an optimal solution {x j1 , ...,x jk}, and let xi1 , ...,xik be the universals
chosen in this order by the above greedy algorithm. We now show by induction
that all the elements in the given solution can be replaced with the elements
computed by the greedy algorithm, without losing optimality.
Suppose xi1 6∈ {x j1 , ...,x jk}. According to Lemma 5.3.7, each pair of universal
quantifiers ∀u and ∀v (with ∀u preceding ∀v in the prefix) in the given formula
has either disjoint or nested dependencies, that is Du∩Dv = /0 or Dv ⊆ Du. That
means the first case for our proof is Dxi1

∩Dx j1
= /0, ...,Dxi1

∩Dx jk
= /0. Then we

can replace x j1 with xi1 and still have an optimal solution:

dupΦ({xi1 ,x j2 , ...,x jk}) = dupΦ({xi1})+dupΦ({x j2 , ...,x jk})≤
dupΦ({x j1})+dupΦ({x j2 , ...,x jk})≤ dupΦ({x j1 , ...,x jk})

If Dxi1
⊆ Dx jl

for some l ∈ {1, ...,k}, it is easy to see that

dupΦ({x j1 , ...,x jk}\{x jl}∪{xi1})≤ dupΦ({x j1 , ...,x jk}) .

Finally, the case Dxi1
⊃ Dx jl

can only occur if C±(Dxi1
) = C±(Dx jl

), because
w(xi1) = dupΦ(xi1) ≤ w(x jl ) = dupΦ(x jl ). Then it is also clear that x jl can be
replaced with xi1 .
Now assume we have an optimal solution {xi1 , ...,xir ,x jr+1 , ...,x jk} which does
not contain xir+1 . If Dxir+1

⊆ Dx jl
for some l ∈ {r + 1, ...,k}, we can clearly

replace x jl with xir+1 without losing optimality. And if Dxir+1
⊃ Dx jl

, we have
C±(Dxir+1

) = C±(Dx jl
) as above, so we can also safely make the substitution.

Otherwise, Dxir+1
is disjoint from dependencies Dx jr+1

, ...,Dx jk
. That means
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when we substitute xir+1 for x jr+1 , none of the clauses in C±(Dx jr+2
∪ ...∪Dx jk

)

must be duplicated more often than in the original solution. As for the other
clauses, we know that dupΦ({xi1 , ...,xir+1}) ≤ dupΦ({xi1 , ...,xir ,x jr+1}) due to
the greedy selection criterion. It follows that
dupΦ({xi1 , ...,xir+1 ,x jr+2 , ...,x jk})≤ dupΦ({xi1 , ...,xir ,x jr+1 , ...,x jk}).

So, as far as the overlapping of universal quantifier scopes is concerned, we ob-
tain an optimal expansion schedule by greedily choosing the cheapest universal
at a time. The theorem provides a good motivation for this greedy strategy, al-
though it is clear that simply counting the sizes of all duplicated clauses is only
a very rough upper bound for the actual costs of universal expansion and does
not take into account the dynamics caused by simplifications. We now attempt
to improve our heuristics by developing tighter cost estimates that can still be
calculated efficiently enough for our preprocessing scenario.

5.5.2. Cost Estimation

In the discussion so far, our calculation of the expansion costs has come from the
observation that expanding a universal x requires two copies of the existentials
in Dx, one for x = 0 and one for x = 1, and accordingly also two copies of every
clause that contains such an existential (Corollary 5.3.4). Using the notation
from the last section, we have

cx ≤ |Dx|+ΣC±(Dx)

where ΣC±(Dx) is the cumulative size of all clauses with a literal depending on x,
and |Dx| reflects the growth of the prefix (remember that the length of a QBF∗

formula was defined to include the length of the prefix, so our cost estimate must
also consider modifications to the prefix). To be precise, the prefix grows only
by |Dx| − 1, as we can drop ∀x after the expansion. This can be ignored here,
because it creates the same constant offset for all universals in the formula.

According to the description in [Bie05], the scheduling of expansions and res-
olutions in the QBF solver Quantor does not take into account the locality of
universals when calculating expansion costs. Instead of ΣC±(Dx) as in the esti-
mate above, it uses ΣC±(Yr) for the innermost existential quantifier block Yr in
the prefix. This overestimation matches the fact mentioned earlier that only uni-
versals from the innermost block Xr are taken into account in Quantor. Since our
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preprocessor, on the other hand, does consider the whole prefix for the reasons
given in Section 5.3.1, we need more precise dependencies Dx. Fortunately, in
our preprocessing scenario, the number of scheduling decisions to be made is
significantly lower than in a full solver like Quantor. One reason is that we do
not have to schedule resolutions. Another reason is that the bound βexp is typi-
cally so tight that we will only expand a limited number of universals, therefore
we execute much less expansion cycles (iterations of the preprocessor’s main
loop). Accordingly, we can spend more time on selecting the variables and can
afford to actually compute the sets of dependent existentials in each expansion
cycle. This needs total time O(e · n · |Φ|) (cf. Listings 5.1 and 5.2), where e is
the number of expansion cycles and n the number of universals in Φ. Our ex-
periments show that this is still feasible: the total time spent for preprocessing
is typically only a small fraction of the time required for the successive run of
the solver. Furthermore, we assume that novel data structures might be applied
here with great benefit in future versions of our preprocessor. We have already
mentioned in Section 5.3.2 a very recent extension of our ideas by Lonsing and
Biere [LB08b] with a simultaneous representation of dependency sets for all
universals in a formula.

We adopt from Quantor a simple improvement of the above cost estimate by tak-
ing into account the obvious fact that when we let x = 0, all clauses that contain
¬x can be removed, and we can drop all positive literals over x. Analogously,
for x = 1, we drop all clauses with positive x and all literals ¬x:

cx ≤ |Dx|+ΣC±(Dx)−ΣC±(x)−|C±(x)|

Expanding variables just because it is cheap to do so is a method without much
foresight. We suggest to further improve our selection strategy by taking into
consideration not only costs, but also goals which we might reach by expanding
certain universals. A rewarding goal in solving satisfiability problems is to ob-
tain unit literals. Propagating them helps keeping clauses short and might lead
to discovering even more unit literals. This is in particular true for formulas
with 2-CNF subformulas, which might just collapse. Consider the following
example:

Φ = ∀x1∀x2∃y1∃y2 (x1∨ y1)∧ (¬y1∨ y2)∧ (x2∨¬y1∨¬y2)

The universals are pure variables, but we ignore this here for simplicity (per-
haps, Φ is part of a larger formula). Then we have Dx1 = Dx2 = {y1,y2}, and
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the expansion costs can be bounded as above by cx1 ≤ 2+7−1−2 = 6 and by
cx2 ≤ 2+7−1−3= 5, so we would select x2 as the one with the lowest estimate.
After expanding x2 and simplifying the resulting formula by removing pure exis-
tential literals, we would get Φ′ = ∀x1∃y1∃y2 (x1∨y1)∧(¬y1∨y2)∧(¬y1∨¬y2)
(there are no renamed existentials, because they were simplified away). Had we
expanded x1 instead, the whole matrix would have collapsed to the empty clause
after propagating the unit literals y1 and y2 when x = 0. Of course, the same
happens when we continue on Φ′, because the possibility to obtain certain unit
literals by expanding one universal is usually not lost by expanding a different
one first. But since our preprocessing only expands a limited number of univer-
sals, we might be forced to stop well before discovering these units and might
thus miss out on them.

Obtaining unit literals is not only a valuable goal to achieve, but as a simplifica-
tion, unit propagation also has a direct influence on the costs of expanding a uni-
versal. That means we do not require separate measures for expansion costs and
benefits, which would have to be balanced somehow. Instead, we can continue
using costs as our single measure for choosing universals and simply subtract
from the expansion costs the reductions that are achieved by propagating newly
created unit literals.

For a universal variable x, let U0 be the unit literals that would be obtained by a
complete unit propagation under the assumption x = 0, and let U1 be the units
induced by x = 1. Then we can remove from the expanded formula all clauses
in which a unit literal from U0 or U1 occurs, in addition to removing clauses
containing ¬x or x as above. With ¬U0 := {¬u | u ∈U0} and analogously ¬U1,
we denote the set of negated occurrences of literals in U0 or U1. These can be
dropped from all clauses which are not already deleted due to an occurrence of
¬x or x. To avoid duplicate counting, we also have to take into account that
occurrences of x and ¬x for the cases x = 0 and x = 1 should only be deleted if
they are in a clause without a unit literal. Then we obtain the following estimate:

cx ≤ |Dx|+ΣC±(Dx)

−ΣC(U0∪{¬x})−|C(¬U0)\C(¬x)|− |C(x)\C(U0)|
−ΣC(U1∪{x})−|C(¬U1)\C(x)|− |C(¬x)\C(U1)|

In order to compute this estimate, we have to perform for each universal vari-
able x in each iteration of the preprocessor’s main loop a complete unit propa-
gation under the assumption that x = 0, and then under the assumption x = 1.
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Since unit propagation can be done in linear time, this needs O(e · n · |Φ|) for e
expansion cycles and n universals in Φ. As with the calculation of the variable
dependencies above, we claim this is still feasible due to the relatively small
values of e in our bounded expansion scenario.

There is an additional benefit to this computation: If U0 (or analogously U1)
contains unit literals over existentials yi whose quantifier precedes the quantifier
of x, these literals must be unit literals for both cases x = 0 and x = 1, because
they do not depend on x. That means we can propagate those units immediately
(and remove them from U0 or U1), even without actually expanding x (similar to
[Rin99]).

With the above estimate, we can take into account simplifications by unit prop-
agation after one step of universal expansion. In a similar way, other kinds of
one-step simplifications may be included. For example, subsumption can be
considered by iterating over all clauses containing x or ¬x and checking whether
any such clause would subsume other clauses if x = 0 or x = 1, i.e. if the literal
x or ¬x is dropped from the given clause. Of course, this does not take into
account that the propagation of units in U0 and U1 from above may also enable
the subsumption of clauses. But considering such interdependence between dif-
ferent simplifications is likely too expensive to compute and can hardly be im-
plemented non-destructively, so we only consider single simplifications in our
cost estimate. Only after a particular universal has been chosen and has been
expanded finally (i.e. destructively), circular application of simplifications until
closure is performed as described in Section 5.4.

5.6. Integration of Q-Resolution

Besides expanding universal variables, it is also possible to eliminate existentials
by performing all possible Q-resolutions on them as explained in Section 2.5,
Proposition 2.5.2. We have already pointed out that this may lead to rapid for-
mula growth, due to the potentially quadratic number of resolvents on each ex-
istential. Equally problematic is the hefty increase in the average clause length
of a formula that typically comes with applying Q-resolution on a larger scale.
Accordingly, our preprocessing focuses mainly on the expansion of universals.
Nevertheless, a limited amount of resolution has proven helpful to counteract the
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duplication of variables caused by universal expansion. More precisely, there are
two situations in which we will apply resolution:

1. Whenever we can eliminate existentials without significantly increasing
the formula size.

2. If we can use resolution specifically to reduce costs of a scheduled expan-
sion.

In order to estimate the costs cy of eliminating by Q-resolution an existential
quantifier ∃y from the innermost quantifier block, we use the upper bound given
in [Bie05], adapted to our notation from the previous section:

cy ≤ |C(¬y)| · (ΣC(y)−|C(y)|) + |C(y)| · (ΣC(¬y)−|C(¬y)|) − ΣC±(y)

Here, the first part ry := |C(¬y)|·(ΣC(y)−|C(y)|) + |C(y)|·(ΣC(¬y)−|C(¬y)|)
represents the costs of generating all possible resolvents on y. For each oc-
currence of ¬y, that means |C(¬y)| times, the resolvents contain all literals in
clauses over positive y (ΣC(y)), except y itself (|C(y)|), and analogously for all
occurrences of y and clauses over ¬y. Finally, the term −ΣC±(y) in cy models
the fact that all original clauses over y and ¬y are dropped from the formula after
adding the resolvents.

The first occasion to apply resolution is during the simplification after expanding
a universal. As long as there are existentials ∃yi from the innermost quantifier
block that have estimated resolution costs below a threshold cyi ≤ βsingle∃ · |Φcur|,
we continually pick the cheapest one and eliminate it by resolution. Here, |Φcur|
is the current formula length after the last universal expansion, and the resolution
bound βsingle∃ is a very small constant. We have achieved good results with
values βsingle∃ ∈ [0,0.003]. With βsingle∃ = 0, we would be guaranteed that the
size of the formula does not increase.

Besides this general simplification that reduces the overall number of existen-
tials, we also suggest a more specific application of resolution which only takes
place after we have chosen a particular universal x for expansion. Our goal is to
reduce its expansion costs cx. A quick glance at the cost estimates from the last
section shows that there are mainly two components which determine the value
of cx: the occurrences of±x itself and the occurrences of dependent existentials.
We are now going to apply resolution to attack the latter.

The idea is to resolve exclusively on dependent existentials in Dx immediately
before expanding x. Eliminating such an existential y ∈ Dx yields a double ben-
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efit, because we do not only get rid of y itself, but also of its soon-to-be-created
copy y′. In addition, we may also save copying some clauses during the follow-
ing expansion. For example, a clause (y1∨y2) with y1 ∈Dx and y2 6∈Dx must be
duplicated when x is expanded, but when we resolve on y1 with (¬y1 ∨ y3) and
y3 6∈Dx before expanding x, the resolvent (y2∨y3) does not need copying, since
both literals do not depend on x. Of course, resolution usually produces many
resolvents, some of which probably still require copying. In our example, the
formula might also contain a clause (¬y1∨y4) with y4 ∈Dx, so that we obtain a
second resolvent (y2∨ y4) which is still dependent on x.

Let δx be an estimate of the average fraction of clauses which must be duplicated
when expanding x (0≤ δx ≤ 1). Then we can estimate the costs cy|x of resolving
an existential y ∈ Dx before x is expanded:

cy|x ≈ (1+δx) · ry − 2 ·ΣC±(y)

We obtain this approximation from the upper bound for resolution given above.
Again, ry := |C(¬y)| · (ΣC(y)−|C(y)|) + |C(y)| · (ΣC(¬y)−|C(¬y)|) indicates
the costs of performing all possible resolutions on y. The factor (1+δx) reflects
the assumption that a portion δx of the resolvents is duplicated in the subsequent
expansion of x. The original clauses over ±y would all have been copied when
expanding x due to y ∈ Dx, hence the factor 2. For simplicity, we do not take
into account that y and x might occur in common clauses. Since accurate values
for δx would clearly be too expensive to compute, we use the estimate

δx = 1−
(

1− |Dx|+1
|vars(Φ)|

)l

if the formula contains a total number of |vars(Φ)| different variables and the
average clause length is l. Then (|Dx|+ 1)/|vars(Φ)| is the probability that a
randomly chosen variable is either x or in Dx. A clause of length l contains no
such variable with probability(

1− |Dx|+1
|vars(Φ)|

)l

.

Resolution also reveals an interesting special case. Consider a scenario in which
we have a universal x with dependent existentials Dx where the set Dx can be
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partitioned into subsets D(1)
x ∪D(2)

x = Dx such that all y2 ∈ D(2)
x are only con-

nected via a single y ∈ D(1)
x to x or other existentials y1 ∈ D(1)

x . That means for
all y2 ∈D(2)

x , we have y2 6∼ x and y2 6∼ y1 for all y1 ∈D(1)
x with y1 6= y. Figure 5.2

illustrates the situation.

x

Dx
(1)

y

Dx
(2)

y

Figure 5.2.: Dependencies with a single link

So, y is the only link which propagates dependency from {x}∪D(1)
x on the one

hand to D(2)
x on the other hand. Can we destroy that link to make the existentials

in D(2)
x independent from x? We could eliminate y by resolving on it, but for non-

tautological clauses of the form (yε ∨ yε1
1 ∨α) and (y1−ε ∨ yε2

2 ∨β ), this creates
resolvents (yε1

1 ∨ yε2
2 ∨α ∨β ). Then y1 ∼ y2 for y1 ∈ D(1)

x and y2 ∈ D(2)
x , which

means Q-resolution usually creates direct links between D(1)
x and D(2)

x . However,
this does not happen if we only have clauses (yε ∨ yε1

1 ∨α) and (yε ∨ yε2
2 ∨ β )

which themselves cannot be resolved on y, because it occurs in the same polarity
yε , and all occurrences of y1−ε are in clauses that contain neither x nor any
existential in Dx. Then we can resolve away y, and the existentials in D(1)

x and
D(2)

x will not be connected anymore, since y has been replaced with variables
that do not propagate the dependency. The situation is still the same when there
are multiple such existentials that connect D(1)

x and D(2)
x with only one polarity

each. We can eliminate them one after another and unlink D(2)
x from x and D(1)

x .

In this scenario, the special property is that for a universal x j, we have an ex-
istential y ∈ Dx j for which one polarity of y occurs only together with other
variables v with v 6∈Dx j and v 6= x j. A closer investigation reveals that we do not
need to perform the actual resolution. Instead, we can immediately infer that y
does in fact not depend on x j.
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Theorem 5.6.1. (Reduction of One-Sided Dependencies)
Given Φ ∈ QBF∗, let ∀x j be a universal quantifier in Φ, and let ∃yi be an exis-
tential in the scope of ∀x j, such that one polarity of yi only occurs in clauses over
yi and other variables v with v 6∈ Dx j and v 6= x j. Then Φ has an equivalence
model M = ( fy1 , ..., fym) in which fyi does not depend on x j.

Proof:
Assume that Φ has no equivalence model in which fyi does not depend on x j.
Let M′ be an equivalence model in which yi is mapped to the model function
f ′yi
(z1, ...,zr,x1, ...,x j−1,x j,x j+1, ...,xk) that needs to depend on x j. Then there

exists an assignment t of truth values to all free and universal variables such that

f ′yi
(t(z), t(x1), ..., t(x j−1),0, t(x j+1), ..., t(xk))

6= f ′yi
(t(z), t(x1), ..., t(x j−1),1, t(x j+1), ..., t(xk))

and the formula matrix is true for x j = 0 and x j = 1 if the values from t are
substituted for the free and the other universal variables and the existentials are
assigned as determined by the equivalence model. Let τ be the value of the
expression in the first line. Without loss of generality, assume that ¬yi is the
polarity of yi which occurs only in clauses with other variables v 6∈ Dx j and
v 6= x j. Then none of those clauses contains a variable which depends on x j, yet
those clauses remain true when yi flips from τ to ¬τ as x j changes. That means
those clauses are true regardless of the value of yi. Thus, we can choose the same
truth value yi = 1 for both x j = 0 and x j = 1, and all clauses with positive yi will
be satisfied as well. It follows that M′ remains an equivalence model if we let

f ′yi
(t(z), t(x1), ..., t(x j−1),x j, t(x j+1), ..., t(xk)) := 1 .

By using this argument repeatedly, we obtain an equivalence model in which f ′yi
does not depend on x j, which is a contradiction to our initial assumption.

It is also possible to apply the theorem consecutively. Assume that it holds for
some yi and that we have another existential yl that occurs in one polarity only
in clauses over variables v with v = yi or v 6∈ Dx j ∪ {x j}. Then yl also does
not depend on x j. This can be seen by replacing yi with an equivalence model
function fyi that does not depend on x j. After retransformation of the resulting
formula into CNF, one polarity of yl shares only clauses with variables v 6∈ Dx j

and v 6= x j, so yl also satisfies the requirements of the theorem. We can actually
remove both yi and yl from Dx j .
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This result can be combined with the dependency computation techniques from
Section 5.3. We can, for example, use a linear-time marking algorithm to com-
pute first without considering variable polarity all existential dependencies of a
given universal. In a second step, we then iterate over all marked clauses and
determine whether a clause contains only one dependent (marked) existential.
If this is the case, we increase a counter for that variable and its correspond-
ing polarity. In a suitable CNF data structure, this can be done in time linear
in the formula length. Then we iterate over all existential variables and check
whether there is a variable for which the total number of occurrences in one
polarity equals the previously computed counter value. If this is the case, we
can apply the above theorem and remove the variable from the dependent exis-
tentials. Then we look through all clauses in which this variable occurs to find
new clauses that now have only one dependent existential, and so on. In to-
tal, this requires time O(m · |Φ|) if there are m existential quantifiers in Φ. To
compute the dependencies for all universals in the formula in this way, we thus
need cubic time, compared to the quadratic complexity of the original marking
algorithm without variable polarity. Of course, we can attempt to improve the
performance of the algorithm by taking into account polarity already during the
initial marking, but this does not appear to lower the actual complexity. It is cur-
rently an actively investigated question in the QBF research community whether
there exists a quadratic algorithm for computing such dependencies with vari-
able polarity.

On the other hand, the consideration of variable polarity can significantly reduce
the amount of copying involved in universal expansion and can thus easily offset
the additional complexity in computing the dependent existentials. It is not diffi-
cult to see that in the bast case, the inclusion of variable polarity can completely
eliminate all dependencies Dx of a universal x and thus give an arbitrarily large
improvement. A simple example is the following formula:

∀x∃y1...∃ym (z1∨¬y1)∧ ...∧ (zm−1∨¬ym−1)∧ (x∨ym)∧ (y1∨ ...∨ym−1∨¬ym)

Without considering variable polarity, we have Dx = {y1, ...,ym}. But with po-
larity, this reduces to Dx = /0, so it is actually sufficient to perform only universal
reduction to eliminate the occurrence of x in the last clause.

As mentioned in Section 5.2, a very similar result has been found independently
and simultaneously with our initial publication [BKB07] by Samer and Szeider
in [SS07]. The difference is essentially in the notation, where they also consider
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universals as being dependent of enclosing existentials. This might be useful for
QBF∗ solvers based on other techniques besides universal expansion or resolu-
tion, but it also makes the notation more complex and less intuitive. In any case,
we consider this simultaneous result on variable dependencies as a confirmation
of the importance that this topic appears to have for QBF∗ reasoning.

5.7. Implementation and Experiments

All the techniques described in this chapter have been implemented into an
expansion-based preprocessor for QBF∗ formulas in clausal form. Our imple-
mentation has been designed with two main objectives in mind:

1. to provide an experimental verification of the contributions made in this
chapter. These can be summarized into two main aspects: we have sug-
gested bounded universal expansion for preprocessing, and we have de-
veloped various refinements to universal expansion. That means we want
our experiments to show on the one hand that solvers based on other tech-
niques can indeed benefit from preprocessing by bounded universal ex-
pansion. On the other hand, we want to demonstrate that our refinements
of universal expansion can increase the performance of expansion itself.

2. to build a platform that facilitates future experiments on universal expan-
sion and Q-resolution, and also investigations on models for quantified
Boolean formulas. This work has already been put to use in Section 3.4 to
study random QHORN formulas.

5.7.1. A Software Platform for QBF∗

In line with the second objective, we have decided to focus on extensibility and
reusability, rather than on performance optimizations. Accordingly, the prepro-
cessor has been implemented on top of our existing Java-based logic framework
ProverBox [Bub03]. The primary goal of the framework is to integrate different
logics and different theorem proving algorithms. The initial version has sup-
ported propositional and predicate logic, and we have now added QBF∗.

Inevitably, the genericity of such a multi-logic framework does come with a
performance overhead. For example, QBF∗ solvers usually represent literals as
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signed integers, but in the ProverBox framework, literals are objects with an ex-
plicit Boolean flag for their polarity and a reference to an object that implements
the Atom interface. An Atom then contains an AtomSymbol whose name is a
String. This allows CNF data structures and algorithms on them to be shared
between the various logics, but it is clear that operations like checking for equal-
ity or complementarity of two literals are significantly more expensive in this
general framework.

Despite these performance concerns, we can already reveal that in the experi-
ments below, the preprocessing time for most benchmark families is rather small
compared to the time required by the subsequently called solvers. So it appears
that the performance of the current preprocessor implementation is adequate for
our experiments. For maximum performance, we would recommend our ex-
pansion techniques to be integrated directly into a competitive solver and to use
more sophisticated data structures for computing and storing dependencies, per-
haps based on the previously mentioned idea from [LB08b].

On the other hand, our generic framework has allowed us to quickly build a
powerful preprocessor with a clean architecture and lots of additional features
for experimenting with QBF∗:

• The software does not only provide a fully automatic preprocessor, but it
can also be used interactively. The user can then selectively expand arbi-
trary universal quantifiers, apply formula transformations, view formula
statistics, compute Horn renamings, etc.

• In addition to reading and writing files in the standard DIMACS and QDI-
MACS formats, a formula parser also allows inputs in familiar formula
notation for all supported logics.

• A generator for random QBF and QHORN formulas (see Section 3.4.1) is
included.

• 3rd party modules can implement additional functionality via a plugin
interface. It provides easy access to the ProverBox data structures and the
included algorithms, such as universal expansion, Q-resolution and all the
simplifications from Section 2.4.

Figure 5.3 provides a screenshot of the ProverBox main window. The large
frame on the left is the integrated editor showing a part of the QBFLIB formula
Adder2-4-c. In the command prompt at the bottom, the preprocessor has been
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invoked, and its output is shown in the right-hand frame. We can see detailed
statistics about the effect of the preprocessing on the given formula.

Figure 5.3.: Screenshot of the ProverBox main window

The complete ProverBox software for propositional calculus, predicate logic and
QBF∗ is available from www.ub-net.de/cms/proverbox.html.

5.7.2. Experiment Setup

We have conducted our experiments with three state-of-the-art QBF solvers,
each in its latest publicly available version2: Quantor 3.0 [Bie05], sKizzo 0.8.2
[Ben05a] and SQBF 12/06 [SB05]. These solvers are well known and have each
made it into the top 3 places (YASM rating for non-probabilistic formulas) at
least once in the 2006 - 2008 competitions of QBFEVAL, a series of interna-
tional competitive evaluations of QBF solvers (www.qbfeval.org).

2as of August 2009.
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Quantor, sKizzo and SQBF are all based on different techniques, so we can
examine how useful our preprocessing is for different solving methods. Since
Quantor is built on the same general idea of universal expansion as our pre-
processor, potential improvements will mainly come from our expansion refine-
ments, and not so much from the preprocessing itself. That means the compar-
ison with Quantor is a good way to evaluate the effectiveness of these refine-
ments. sKizzo mainly uses symbolic skolemization by successively computing
satisfiability model functions, and SQBF is an improved variant of the DPLL
algorithm for QBF that attempts to solve QBF formulas by working on their
propositional matrix with a conventional SAT solver for different assignments to
quantified variables. In both cases, preprocessing by universal expansion should
be very useful: for sKizzo, the arity of the model functions should decrease, and
SQBF should need fewer decisions on universal variables, and thus fewer calls
to the SAT solver.

The experiments have been run on two platforms: Cygwin 1.5 on Windows Vista
x64 on a machine with Core2Duo E8400 at 3.6 GHz and 4GB RAM for Quantor
and SQBF, and Debian Linux 5.0 64bit on a Core2Duo E6600 with 2.4 GHz and
4GB RAM for sKizzo. We would have preferred to use the same platform for all
three solvers, but we had found the Cygwin binary for sKizzo to be unstable on
our Vista x64 machine. Nevertheless, working with two different platforms does
not have a negative impact on the expressiveness of our experiments, since our
main objective is not to compare the different solvers with each other. Instead,
we want to compare for each single solver the results with and without prepro-
cessor. Of course, the preprocessor has been run on the same machine as the
corresponding solver in each experiment. Both machines have been equipped
with Java 1.6 for this purpose. The solvers and our current preprocessor im-
plementation all use only one single working thread and thus only marginally
benefit from a dual core processor.

Each solver has been run with default parameters on 15 families of benchmarks
with a total of 849 formula instances from the QBFLIB collection [GNT01]. We
have tried to choose benchmark families of such a difficulty level that the solvers
could solve some, but not all, formulas of a family within a time limit for each
formula of 300 seconds. Two attempts have been made to solve a formula: one
with the solver itself, and one where the formula is first fed into our preprocessor
and its output is then given to the solver (unless the preprocessor has already
solved the formula on its own). Of course, the time limit and the time recorded
for the experiments with preprocessor consider both the preprocessor and the
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solver in combination. That means if the preprocessor requires 50 seconds on a
formula, the solver has 250 seconds left until timeout.

It may happen that the preprocessor itself does not finish within 300 seconds,
but we will see in the detailed results below that this has occurred in our experi-
ments only with 2-3 very large instances on which the solvers alone have mostly
timed out as well. In these rare cases, it might have been helpful to restrict the
preprocessing to a fixed fraction of the given time, e.g. 150 seconds, and hope
that some partial preprocessing might be sufficient for the solver to handle the
formula. We did, however, refrain from such ideas, because preprocessing times
are in most cases only a small fraction of 300 seconds, which makes special
treatment for only a few formulas somewhat pointless. In addition, internal time
limitations are explicitly forbidden by the rules of the QBFEVAL, which we
have taken as a role model for our own experiments. As usual, if an instance
cannot be solved, e.g. because of a timeout or an out-of-memory condition, it is
counted as the timeout value.

To make the experiments less time-consuming, we have performed them in a
give-up mode in which a (sub)family of formulas is quit whenever we encounter
an instance that is unsolved by both the solver and the solver with preprocessor.
For example, neither sKizzo itself nor sKizzo with preprocessor can solve the
instance adder-14-sat, so we skip the next and also last instance of the same kind,
adder-16-sat, without counting this one as a timeout, and continue immediately
with adder-2-unsat. Of course, this requires that the instances are approximately
sorted in order of ascending difficulty. Where this was not already the case
by default, we have grouped formulas in obvious subfamilies (e.g. adder-sat,
adder-unsat, Adder2-s, Adder2-c, or cnt, cnt-r, ...).

It is clear that the expansion bound βexp has a significant impact on the perfor-
mance of our preprocessing approach. We will later see that the solvers react
differently to modifications in this parameter, so there is not one single value
which is optimal for all solvers. We have, however, found that βexp = 2.0 (in
combination with a resolution bound of βsingle∃ = 0.002) is a good compromise.
And since our goal is to provide a multi-purpose preprocessor that does not re-
quire parameter tweaking by the user, we have decided to conduct most of the
following experiments with these default values, rather than using individual op-
timal bounds for each solver. A more detailed comparison of parameter settings
will then be given in Section 5.7.4.
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5.7.3. Results and Discussion

An overview of our experimental results can be seen in Table 5.1. It presents
for each solver and each combination of a solver with our preprocessor the total
number of instances solved and the total computation time in seconds. For better
comparisons, we have also included the relative improvements. In this and in the
following tables, we use bold font to indicate best results (within a category).
The results given here are a summary of Tables 5.2 - 5.4 on pages 168 - 170,
which will be discussed further below.

Table 5.1.: Summary of preprocessing results
(default bounds βexp = 2.0, βsingle∃ = 0.002)

Quantor Quantor+pre sKizzo sKizzo+pre SQBF SQBF+pre

#Solved 194 215 300 331 212 293

Increase +10.8% +10.3% +38.2%

Time [sec.] 16,345 10,854 21,416 10,876 35,589 10,590

Speedup ≥1.5 ≥2.0 ≥3.4

All three solvers show significant overall gains from the preprocessing. In par-
ticular, our preprocessor allows SQBF to solve almost 40% more problems in
less than 30% of the time originally recorded. If we consider only the computa-
tion time, that is a more than three-fold speedup. But it is likely that some of the
problems which SQBF alone cannot solve within 300 seconds require far more
time than that in order to be solved by SQBF without preprocessor. That means
the real speedup might be much higher, perhaps an order of magnitude or even
more on some problems. We have tried to emphasize this with the ≥ signs in
front of the speedup values in the table. On many of the problems solved by
SQBF with preprocessor, SQBF alone appears to run out of memory (it heavily
uses clause learning, which might be the reason for that memory consumption),
so the advantage from preprocessing cannot even be offset with more computa-
tion time.

The reason why SQBF benefits so much from universal expansion appears to
be the heavy influence that the number of universal quantifiers and the number
of quantifier blocks has on DPLL-style solvers. If there were only existential
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quantifiers in the input formula, SQBF would require only one run of the SAT
solver on the matrix of the formula, but this number might grow exponentially
for more universals. For the skolemization-based solver sKizzo, the size of the
model functions may also grow exponentially in the number of universals, but
we assume that the benefits from having fewer universals are partially absorbed
by the increase in the number of existentials that may come with universal ex-
pansion. That means sKizzo might need to find more model functions, and that
focus on the existentials is probably the main reason why the preprocessing ef-
fect is not as strong as with SQBF.

The good results with Quantor are somewhat surprising, considering that Quan-
tor is also expansion-based and therefore cannot be expected to benefit that much
from the preprocessing itself, but only from our refinements of universal expan-
sion. It appears that our improved dependency scheme, the careful selection of
universals from the whole prefix and the resolution on dependent existentials
can indeed considerably reduce the memory consumption of repeated universal
expansion. In many of the problems that are only solved with the help of the
preprocessor, Quantor on its own seems to run out of memory, just like we have
observed with SQBF.

We now consider the more detailed itemization of results for individual bench-
mark families given in Tables 5.2 - 5.4 on pages 168 - 170. All time values are
wall time measured in seconds. Time values shown in the 6th column are the
total times for running solver and preprocessor in combination on all attempted
problems in the corresponding benchmark family. In parentheses, the fraction
of that time spent on preprocessing is shown (rounded to whole percentages).
For example, the total computation time for Quantor with preprocessor on the
Adder family was 1,218 seconds, of which about 1% (the exact value is 17 sec-
onds) were for preprocessing.

We can observe that preprocessing times are negligible for most families, but
there are a few families where practically all computation time is spent on pre-
processing. Some of the latter are completely solved by the preprocessor alone
without calling the solver at all (ASP, Szymanski), or they are dramatically sim-
plified by the preprocessing (e.g. Sakallah s499, s510). The number of solved
problems increases in almost all these benchmark families that require a signifi-
cant amount of preprocessing time, so the time appears well spent.
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Table 5.2.: Benchmark results for Quantor without/with preprocessing
(default bounds βexp = 2.0, βsingle∃ = 0.002; times in seconds)

Benchmark Family Quantor Quantor + preproc Speedup

Name #inst #solvd time #solvd time (preproc)

Adder 32 8 1,812 10 1,218 (1%) 1.5

ASP 12 0 3,600 12 95 (100%) 37.9

Blackbox_design *.003 8 0 300 0 300 (0%) 1.0

Blocks 13 13 89 13 113 (2%) 0.8

Connect3 cf_3_3* 21 4 302 4 302 (0%) 1.0

Counter 88 54 3,184 56 2,744 (0%) 1.2

CounterFactual 4; 8-16 480 49 2,708 50 2,404 (0%) 1.1

Evader-Pursuer 4x4-lg 7 1 336 1 334 (0%) 1.0

k_branch_n 21 3 302 3 302 (0%) 1.0

k_path_n 21 21 2 21 7 (71%) 0.3

RobotsD2 *.2, *.4, *.8 29 9 612 9 646 (1%) 0.9

Sakallah s499, s510 13 3 928 4 743 (100%) 1.2

Sorting_networks 84 26 660 26 659 (0%) 1.0

Szymanski 12 3 910 5 525 (100%) 1.7

Term1 8 0 600 1 462 (0%) 1.3

Total 849 194 16,345 215 10,854 (13%) 1.5
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Table 5.3.: Benchmark results for sKizzo without/with preprocessing
(default bounds βexp = 2.0, βsingle∃ = 0.002; times in seconds)

Benchmark Family sKizzo sKizzo + preproc Speedup

Name #inst #solvd time #solvd time (preproc)

Adder 32 10 1,536 11 1,381 (4%) 1.1

ASP 12 8 1,799 12 147 (100%) 12.2

Blackbox_design *.003 8 0 300 0 300 (0%) 1.0

Blocks 13 8 300 8 300 (0%) 1.0

Connect3 cf_3_3* 21 1 300 1 300 (0%) 1.0

Counter 88 49 4,041 54 2,564 (0%) 1.6

CounterFactual 4; 8-16 480 171 3,378 174 1,940 (1%) 1.7

Evader-Pursuer 4x4-lg 7 1 315 1 328 (0%) 1.0

k_branch_n 21 5 649 6 307 (1%) 2.1

k_path_n 21 10 1,574 14 842 (0%) 1.9

RobotsD2 *.2, *.4, *.8 29 18 4,705 29 96 (88%) 49.0

Sakallah s499, s510 13 2 1,201 4 812 (100%) 1.5

Sorting_networks 84 12 601 12 601 (0%) 1.0

Szymanski 12 5 417 5 658 (100%) 0.6

Term1 8 0 300 0 300 (0%) 1.0

Total 849 300 21,416 331 10,876 (16%) 2.0
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Table 5.4.: Benchmark results for SQBF without/with preprocessing
(default bounds βexp = 2.0, βsingle∃ = 0.002; times in seconds)

Benchmark Family SQBF SQBF + preproc Speedup

Name #inst #solvd time #solvd time (preproc)

Adder 32 4 2,103 7 1,233 (1%) 1.7

ASP 12 0 3,600 12 91 (100%) 39.6

Blackbox_design *.003 8 0 300 0 300 (0%) 1.0

Blocks 13 11 610 12 400 (1%) 1.5

Connect3 cf_3_3* 21 14 2,144 21 317 (3%) 6.8

Counter 88 37 4,164 42 2,965 (0%) 1.4

CounterFactual 4; 8-16 480 100 11,580 126 1,553 (0%) 7.5

Evader-Pursuer 4x4-lg 7 7 9 7 19 (26%) 0.5

k_branch_n 21 4 1,599 8 502 (0%) 3.2

k_path_n 21 5 1,316 8 559 (0%) 2.4

RobotsD2 *.2, *.4, *.8 29 20 2,810 29 124 (44%) 22.7

Sakallah s499, s510 13 0 1,800 4 746 (100%) 2.4

Sorting_networks 84 10 1,154 11 659 (0%) 1.8

Szymanski 12 0 1,800 5 525 (100%) 3.4

Term1 8 0 600 1 597 (0%) 1.0

Total 849 212 35,589 293 10,590 (14%) 3.4
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In each of Tables 5.2 through 5.4, at least half the benchmark families show an
increase in the number of solved problems when using our preprocessor. For
SQBF, almost all families (13 out of 15) benefit, and every solver has families
where more than 50% additional problems can be solved with preprocessing.
Also very important is the fact that in our experiments, the number of solved
problems has never decreased due to the preprocessing, and that applies to all
three solvers. Only in 6 out of 3 ·15 cases, a solver was faster on a family without
preprocessor. We think this supports our initial hypothesis from Section 5.4 that
enforcing tight bounds on the expansion can largely prevent negative effects. In
total, we think it is safe to say that the positive effects of our preprocessing by
far outweigh its potential drawbacks.

A close look at the benchmark families in Tables 5.2 through 5.4 reveals that
there are some families for which every solver significantly benefits from the
preprocessing, e.g. Adder, ASP or Sakallah s499/s510. On the other hand, no
solver seems to take advantage of the preprocessing on the two benchmark fami-
lies Blackbox_design and Evader-Pursuer. The Blackbox formulas are probably
just too hard, because none of the solvers in our experiment is able to solve
any such instance, even if the timeout is increased to much more than 300 sec-
onds. We have decided to keep this family in our experiments nonetheless to
provide at least one example for such a very hard formula class. To understand
the results for Evader-Pursuer, the other family that does not show any benefits
from the preprocessing, we need to consider in more detail the structure of these
formulas, and how the preprocessing affects it.

Table 5.5 shows for each family the average impact that the preprocessing has
on various formula metrics. The first two columns of data indicate the average
relative difference in the number of universal and existential quantifiers before
and after preprocessing. For example, assume that a family consists of two for-
mulas, one with 10 universal quantifiers before preprocessing and 5 of them after
preprocessing, and another one with 1 universals before and 0 universals after
preprocessing. Then we have −50% universals for the first formula and −100%
for the second one, which results in an average relative difference of −75%.
By first calculating relative differences and then taking the average, we give the
same weight to every formula. The third column of data reports the average
relative differences in the number of quantifier blocks in the prefix, and the last
two columns provide average relative differences in the number of clauses and
in the average number of literals per clause. The last line in the table contains
the averages of all entries in the corresponding column.
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5. Bounded Universal Expansion

Table 5.5.: Effects of preprocessing on the formula structure
(default bounds βexp = 2.0, βsingle∃ = 0.002; shown are average rel-
ative differences, where negative values indicate an improvement by
preprocessing)

Benchmark Family Universals Existentials Prefix blocks Clauses Ø Clause size

Adder -62.2% -43.4% -15.5% +12.1% +104.9%

ASP -100.0% -100.0% -100.0% -100.0% -100.0%

Blackbox_design *.003 -32.0% -53.2% -17.9% +10.3% +45.6%

Blocks -20.9% +12.1% 0.0% +9.7% +0.4%

Connect3 cf_3_3* -72.8% -70.8% -72.8% -60.1% -64.6%

Counter -58.8% -6.9% -54.7% +20.1% -6.9%

CounterFactual 4; 8-16 -39.4% -19.3% -20.5% -0.1% +38.2%

Evader-Pursuer 4x4-lg -4.1% +14.3% 0.0% +60.2% +6.8%

k_branch_n -15.5% -4.1% -14.8% +58.1% +12.6%

k_path_n -36.4% +31.4% -33.9% +28.6% +14.8%

RobotsD2 *.2, *.4, *.8 -5.7% +64.7% 0.0% +29.7% +2.0%

Sakallah s499, s510 -83.5% -87.4% -60.0% -87.5% -23.5%

Sorting_networks -23.4% -27.5% 0.0% +13.6% +35.5%

Szymanski -100.0% -100.0% -100.0% -100.0% -100.0%

Term1 -54.8% +1.0% -37.7% +44.7% +22.9%

Family Average -47.3% -25.9% -35.2% -4.0% -0.8%
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If the preprocessor manages to completely solve a formula instance, we count
−100% for all metrics of this formula. We have used bold font for all values
which are negative and thus indicate an improvement by preprocessing. The
table represents all of the 849 benchmark instances that could be preprocessed
within the time limit, which excludes the 7 largest Szymanski instances and the
Sakallah formulas s499_d8_s / s510_d8_s and upwards. None of those could be
solved by any of the solvers within the same time limit.

We can first observe that on average over all families, the number of universals is
almost cut in half, and the number of quantifier blocks in the prefix is reduced by
more than one third. Independent of the speedups and increases in the number
of solved problems that we have reported earlier, these new numbers are another
demonstration of the effectiveness of bounded universal expansion for prepro-
cessing. At the same time, the number of clauses and the average clause size
remain roughly the same, with the existentials actually decreasing as well. This
suggests that the strategy of resolving primarily on dependent existentials prior
to a scheduled universal expansion does indeed help in keeping the formulas
small.

A nice example in absolute numbers is the Adder2-s subfamily where the mean
number of universals before preprocessing is 557, and 110 afterwards. That
means more than 440 universals can be eliminated on average with at most a
doubling of the formula size. Considering that the naive expansion of universal
quantifiers would almost double the formula size for each single universal, this
is certainly an impressive result. At this point, we would like to mention that
those Adder2-s formulas are not particularly easy to solve: the larger instances
have been classified as “HARD” in the latest QBFEVAL, and in our experi-
ments, none of the solvers has succeeded on more than half of them. Even in
those cases in which the preprocessor is able to eliminate all universals (which
is possible within the given bounds for the two smallest instances), the resulting
propositional formula does not collapse and cannot be solved by preprocessing
alone.

Adder is one of the families where preprocessing helps all three solvers. The
other families in this category are ASP, Counter, CounterFactual and Sakallah.
Table 5.5 shows that all these families have relatively large reductions in the
number of universals and also in the number of quantifier alternations. Since
the expansion bound βexp is always the same, these families obviously have
universals that are cheaper to expand than the universals in other benchmark
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5. Bounded Universal Expansion

families. The observation that families with cheap universals tend to show the
highest speedups over the original solvers seems to verify our hypothesis that
universal expansion is most powerful for preprocessing when it is restricted to
the cheapest universals, whereas more expensive universals should be attacked
with different techniques. Of course, this is only a rough characterization. Ac-
cording to Table 5.5, Connect3 and Szymanski also seem to behave very well
under universal expansion. As expected, we can see some nice speedups for
these families, but only with one or two solvers, not with all three. The reason is
probably that in both families, many problems can be solved by the preprocessor
alone, which has a positive impact on the formula metrics for those families, but
hides the effort for the preprocessing and overshadows the remaining formulas
(in Connect3) for which universal expansion is more expensive.

A family in which none of the solvers benefits from preprocessing is Evader-
Pursuer. In these formulas, we have found all universals to be very expensive to
expand. We can see from Table 5.5 that on average, only 4.1% of the universal
quantifiers in an Evader-Pursuer instance can be expanded. In absolute numbers,
that is one universal per formula, but that single expansion causes a 60% increase
in the number of clauses (and that already includes subsequent simplifications),
which is the largest increase of all families in the experiment. Evader-Pursuer
encodes a chess-like game where the universal quantifiers indicate the moves
of one of the two players. Apparently, every single move heavily influences
the valuation of the whole game. Clearly, it would be unwise to expand more
universals in that situation. Indeed, if we loosen the expansion bound to allow
two expansions with Evader-Pursuer, both sKizzo and SQBF will perform worse
on this family. Do the families with cheaper universals show the same behavior
when the bound is increased? We will try to answer this question in the next
section.

5.7.4. Comparison of Different Expansion Bounds

We would like to finish our experiments with a brief comparison of different val-
ues for the expansion bound βexp. This is the parameter which directly controls
the number of expansions performed and therefore determines the performance
of the whole preprocessor. The second parameter, the resolution bound βsingle∃,
has a much more indirect influence, since our preprocessing approach uses res-
olution only as a simplification to mitigate the increase of existential variables
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due to universal expansions. A similar threshold for unscheduled resolutions
has already been investigated in [Bie05]. Biere suggests a fixed threshold of 50,
while we have decided to choose a relative bound of βsingle∃ = 0.002 · |Φ| for a
formula of length |Φ|. For many small to medium-sized problems in the above
benchmark families, 0.002 · |Φ| is in the range of 20 to 60 and therefore roughly
of the same order of magnitude as the value suggested by Biere, so we focus in
the following on the more important parameter βexp.

Figure 5.4 shows for different expansion bounds βexp ∈ [1.0,4.0] how effec-
tive the preprocessor is in terms of solved problems in combination with SQBF.
For each bound, the diagram indicates the relative increase in solved instances
that SQBF with βexp-bounded universal expansion can achieve in comparison to
SQBF without preprocessor.
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Figure 5.4.: SQBF preprocessing benefit for different bounds βexp
(default resolution bound βsingle∃ = 0.002)

At βexp = 1.0, only the general simplifications described in Section 5.4 are ap-
plied. Obviously, SQBF has less powerful simplifications, since there is already
an improvement even without universal expansion, but the effect is still small
in comparison to the peak at approximately βexp = 2.0, the default bound from
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the previous experiments. sKizzo and Quantor are capable of essentially the
same general simplifications as our preprocessor, so they hardly benefit from
preprocessing without expansions, as can be seen in the following Figure 5.5 for
Quantor.
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Figure 5.5.: Quantor preprocessing benefit for different bounds βexp
(default resolution bound βsingle∃ = 0.002)

The most interesting difference between the two figures is the following: for
larger bounds, the preprocessor performance with SQBF seems to slowly de-
cline, whereas it appears to further increase with Quantor.

The behavior with SQBF is what we would expect from our previously men-
tioned assumption that cheap universals should be expanded, and expensive ones
should be left as they are, because the subsequent solver might be better at han-
dling them with a different technique. If the expansion bound βexp is increased,
it means that the preprocessing extends to more expensive universals. Figure 5.4
shows that SQBF seems indeed better at dealing with these expensive univer-
sals, but only slightly, since the curve appears to fall rather slowly. It might also
be the case that with larger bounds, the sheer size of the expanded formula is
becoming a problem for SQBF. We have to consider that many problems with
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only a few thousand clauses are already considered hard in the QBFLIB. Now
if the input formula is very large with, say, 100,000 clauses, a four-fold growth
might really cause a solver to run into problems like memory exhaustion or too
expensive operations, even if the formula itself is structurally easier due to the
preprocessing. With a suitably selected expansion bound, we avoid flooding the
solver with too large formulas.

Why are we not seeing the same behavior with Quantor? The reason is probably
that Quantor also uses universal expansion, so there is no other technique that
might be more suitable for expensive universals. In this case, the above hypoth-
esis about expanding preferably the cheap universals does not apply. In fact, it
appears that our refinements of universal expansion are indeed beneficial. Then
it is certainly good if our preprocessor takes over as much as possible, and this
is probably why the curve appears to go up even further for larger expansion
bounds.

With a default expansion bound of βexp = 2.0, we seem to be in an area which is
generally beneficial to all solvers. We prefer to keep it as low as possible, since
we think that a preprocessor should rather be defensive, and we do not want to
overload less optimized solvers.

5.8. Summary

Making it easier for QBF∗ solvers by selectively removing universal variables in
a preprocessing step - a simple yet intriguing idea. We have successfully realized
and experimentally verified this approach on the basis of universal expansion,
which we have made bounded and more general by choosing universals from
the whole prefix, or even miniscoped partitions of such universal scopes. In
the scheduling of expansions, we include an element of goal orientation by also
considering possible expansion benefits, such as the generation of unit literals.

We have observed that the size of an expanded formula directly depends on the
set of existentially quantified variables which are dominated by the expanded
universal, so we have placed a special focus on the problem of accurately de-
termining these existentials. We have presented a dependency concept which is
more compact than existing approaches by taking into account both local con-
nectivity of variables and their polarity. These ideas are not only useful in the
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context of universal expansion, and some of them have already been picked up
in subsequent publications, e.g. [LB08a, LB08b]. By resolving specifically on
dependent existentials, we further reduce the overhead of universal expansion.

Our experiments with three state-of-the-art QBF solvers and well-known bench-
mark problems from the QBFLIB have shown that the preprocessing often leads
to considerable speedups and increases in the number of solved problems. On
the other hand, the bounding appears to mostly prevent negative effects, so that
the number of solved problems has never decreased in our experiments. Besides
improvements in the solver performance, the experiments have also shown that
our preprocessing is usually very effective at simplifying the prefixes, which
greatly helps in making formulas structurally easier. It appears that universal ex-
pansion in combination with our refinements is the method of choice to handle
universal quantifiers with small to moderate-size scopes.
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6. Conclusion

Quantification is a powerful tool to obtain natural and compact encodings. We
have, however, seen that not all usage patterns of quantifiers are equally effec-
tive, which makes it important to balance clarity and conciseness versus decision
complexity. The contributions in this thesis support that tradeoff by providing

• relationships between formula structure and quantifier expressiveness,

• preprocessing that eliminates weak quantifiers,

• useful subclasses with lower complexity,

• and suitable modeling patterns.

One of our key observations is that there are close connections between the
clause structure, the structure of models, and the universal expansion method.
Our focus has been on universal expansion, because for CNF formulas, the
elimination of universal instead of existential quantifiers appears to be gener-
ally cheaper (although still exponential in nature). We have shown that the im-
balance between universal and existential quantification is particularly evident
when the quantified variables satisfy the Horn property. In this case, all univer-
sal quantifiers can be expanded simultaneously with less than quadratic formula
growth. What makes this result particularly interesting is that it even applies if
unrestricted free variables are allowed. For such QHORNb formulas, it follows
that ∃HORNb =poly−time QHORNb. We have seen that these formulas are a natu-
ral representation for applications like CNF transformations or graph encodings.
In addition to valuable insights into the behavior of quantifiers, our quadratic
universal expansion can be applied by general QBF∗ solvers to more efficiently
handle QHORNb (sub)problems that may either be part of the input formula or
arise after initial operations or branchings.

For arbitrary QCNF∗ formulas, we have shown that the arity of model functions
can be restricted by computing transitive closures of local connectivity between
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variables in common clauses in consideration of variable polarity. Our depen-
dency concept is more compact than existing approaches, in the best case by an
arbitrarily large factor. This has allowed us to significantly reduce the amount of
copying required by universal expansion. It is clear that concise dependencies
are also very important for other solving techniques like symbolic skolemization
or QDPLL, e.g. in order to avoid unnecessary branchings.

Our dependency concept can recover non-prenex structures that have been hid-
den inevitably by prenexing transformations. As an alternative to recovering
dependencies retroactively, we have considered dependency quantified Boolean
formulas DQBF∗. The explicit indication of variable dependencies allows new
modeling approaches which are more natural and more compact than ordinary
QBF∗ or even non-prenex QBF∗ encodings. We have seen that the increased
compactness is due to the ability to better reuse variables in order to save space,
which has been illustrated by our new DQBF∗ encoding of bounded reacha-
bility, an important subproblem of bounded model checking. Restrictions on
the structure of the dependencies have led us to easier subclasses that avoid the
NEXPTIME-completeness of arbitrary DQBF∗. In addition, the Horn property
appears to be such a strong restriction on the clause structure that Horn formulas
remain tractable even with dependency quantification. This makes DQHORN∗

the first non-trivial class of formulas known to be tractable in combination with
dependency quantification.

Based on the assumption that locally used quantifiers do not contribute much to
the compactness of an encoding, yet can make solving the formulas much harder
in practice, we have suggested a preprocessing for QCNF∗ formulas. The idea is
to eliminate as many of those cheap quantifiers as possible within given bounds,
with a clear focus on the universal ones. Experiments with well-known problems
from the QBFLIB formula collection have demonstrated that this preprocessing
is very effective on simplifying the prefixes. On average, almost 50% of the
universals and more than 25% of the existentials have been eliminated with-
out increasing the formula length. Consequently, we have also seen significant
performance improvements with state-of-the-art QBF solvers. In particular, the
solver SQBF was able to solve almost 40% more problems in less than 30% of
the time originally required.

The success of this preprocessing approach motivates further research on pos-
sible improvements. In particular, we assume that it is beneficial to not only
eliminate variables, but also to introduce new ones when there are considerable
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redundancies in the formula. The idea is to have two thresholds βelim and βadd
with βelim� βadd , such that quantifiers are eliminated whenever the cost of do-
ing so is below βelim, and new quantifiers are introduced whenever this leads
to a compression of more than βadd . In the latter case, some of the encoding
rules from Section 2.6 could be used. The easiest is probably the abbreviation of
repeating subformulas with new existential variables. A tool for automatically
applying such encoding rules to arbitrary propositional or quantified Boolean
formulas would also be interesting on its own. A main problem, however, is
the efficient detection of repetition or similarity. Another interesting improve-
ment would be to resolve not only on existentials from the innermost quantifier
block. This could be accomplished without compromising soundness by taking
into account the dependency information that is already available. In addition,
we would like to evaluate the inclusion of further strategic elements into our
variable selection. For example, it might be interesting to give preference to
universals that appear in short clauses, or to attempt making local areas of the
formula completely free of universals.

Determining compact variable dependencies is not only an essential part of our
preprocessing, but it is also an important problem for QBF∗ solving in general.
We see the possibility to make our dependency concept even more concise by
considering in addition to variable polarity also complementary universals, sim-
ilar to the idea of universal blocking in Q-resolution. The dependency computa-
tion itself might also be optimized, e.g. by taking advantage of prior miniscop-
ing and by using more sophisticated data structures for computing and storing
dependencies, like those suggested in [LB08b].

For DQBF∗, we have demonstrated that universal expansion can easily be lifted
from QBF∗. Additional solving techniques would be required to build a rea-
sonably powerful DQBF∗ solver. Symbolic skolemization as it is used in sKizzo
[Ben05a] can probably be adapted in a natural way to dependency quantification,
but it is unclear how Q-resolution could be lifted to DQBF∗. In the QBF∗ case,
the refutation completeness of Q-resolution is shown by successively eliminat-
ing existentials from innermost to outermost, a technique which is not applicable
to partially ordered quantifiers.

Our expressiveness result ∃HORNb =poly−time QHORNb =poly−time DQHORNb

complements the existing result CNF <poly−length ∃HORNb. We assume that
also PROP <poly−length ∃HORNb. Since PROP ≤poly−time ∃2-HORNb by our
PS-graph CNF transformation from Section 3.8, it would be sufficient to prove
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∃2-HORNb <poly−length ∃HORNb, or PROP <poly−length ∃2-HORNb. Still, this
appears to be a very challenging problem, in particular if we consider that such
a result would imply Boolean circuits with arbitrary fan-out to be exponentially
more powerful than circuits with fan-out 1, a problem which has been open for
many years.
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For quick reference, this appendix provides a collection of the definitions of all
formula classes which are considered in this document.

A.1. Propositional Formulas and Normal Forms
PROP,NNF,(k -)CNF,(k -)DNF

With PROP, we denote the class of propositional formulas, which is inductively
defined by the following rules (exclusively):

1. Every propositional variable is a formula.

2. If φ is a formula, its negation (¬φ) is also a formula.

3. If φ1 and φ2 are formulas, the conjunction (φ1 ∧ φ2) and the disjunction
(φ1∨φ2) are also formulas.

We furthermore allow implication (φ1→ φ2) as an abbreviation for ((¬φ1)∨φ2)
and equivalence (φ1↔ φ2) to denote ((φ1→ φ2)∧ (φ1← φ2)).
If parentheses are omitted, we assume the following operator binding priorities:
¬ has highest priority, followed in decreasing order by ∧, ∨,→ and finally↔.

NNF is the class of propositional formulas in negation normal form, which re-
quires that negations only occur immediately in front of a variable. That means
a NNF formula is either a positive propositional variable x, a negated variable
(¬x), or a conjunction (φ1∧φ2) or disjunction (φ1∨φ2) of NNF formulas φ1,φ2.

A propositional formula is in conjunctive normal form (CNF) if it is of the form

φ =
q∧

i=1

si∨
j=1

li, j

where a literal li, j is a positive or negated propositional variable.
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Analogously, formulas in disjunctive normal form (DNF) have the form

ψ =
q∨

i=1

si∧
j=1

li, j

for literals li, j.

For k ≥ 1, k-CNF (k-DNF, respectively) contains all CNF (DNF) formulas with
at most k literals per clause, i.e. si ≤ k in the formulas above.

A.2. Quantified Boolean Formulas
QBF(∗),∃BF(∗),Q(k -)CNF(∗),Q(k -)DNF(∗)

A quantified Boolean formula Φ ∈ QBF (in prenex form) is a formula of the
form

Φ = Q1v1...Qkvk φ(v1, ...,vk)

with a prefix of existential or universal quantifiers Qi ∈ {∃,∀} and propositional
variables vi. The matrix φ is a propositional formula over the quantified vari-
ables.

With QBF∗, we denote quantified Boolean formulas with free variables, that
means formulas

Ψ(z1, ...,zr) = Q1v1...Qkvk ψ(v1, ...,vk,z1, ...,zr)

where the propositional matrix may also contain variables which are not bound
by a quantifier.

QBF or QBF∗ formulas with a purely existential prefix (Q1 = ∃, ...,Qk = ∃) are
called existentially quantified Boolean formulas ∃BF (without free variables) or
∃BF∗ (with free variables).

Let K ∈ {NNF,CNF,k-CNF,DNF,k-DNF} be a class of propositional formulas.
Then QK (QK∗ if free variables are allowed) denotes the corresponding subclass
of QBF (QBF∗, respectively) that contains all formulas whose matrix is in K.
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A.3. Horn Formulas

The Horn property is the syntactic restriction of having at most one positive
literal per clause. A variety of interesting formula classes can be formed around
this property. They differ in the kinds of variables which we allow and in whether
the Horn property is enforced on all allowed variables or only a subset of these.
Table A.1 provides an overview of important formula classes, and the following
sections provide the corresponding formal definitions.

Table A.1.: Overview of Horn Formula Classes

Formula class Allowed variable types Horn property applies to

HORN free free

QHORN ∃, ∀ ∃, ∀

QEHORN ∃, ∀ ∃

QHORN∗ ∃, ∀, free ∃, ∀, free

QHORNb ∃, ∀, free ∃, ∀

QEHORN∗ ∃, ∀, free ∃, free

∃HORN ∃ ∃

∃HORN∗ ∃, free ∃, free

∃HORNb ∃, free ∃

A.3.1. Propositional Classes HORN,k-HORN

The class of propositional Horn formulas (HORN) contains all CNF formulas
with at most one positive literal per clause. For a constant k≥ 2, k-HORN means
HORN formulas with at most k literals per clause.
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A.3.2. Quantified Horn Formulas Q(k -)HORN,Q(k -)HORN∗

With QHORN (Qk-HORN, respectively), we denote quantified Horn formulas,
that means formulas

Φ = Q1v1...Qkvk φ(v1, ...,vk)

where φ ∈ HORN (k-HORN, respectively).

Formulas
Ψ(z1, ...,zr) = Q1v1...Qkvk ψ(v1, ...,vk,z1, ...,zr)

with free variables which also satisfy the Horn property, that is ψ ∈ (k -)HORN,
are called quantified (k-)Horn formulas with free variables, denoted by QHORN∗

(Qk-HORN∗, respectively).

A.3.3. Generalized Horn Q(k -)HORNb,Q(k -)EHORN(∗)

Generalizations of quantified Horn formulas arise when the Horn property is
enforced only on certain kinds of variables. One possibility is to allow free
variables that are exempt from the Horn property. Then Q(k -)HORNb is the
class of all formulas

Γ(z1, ...,zr) = Q1v1...Qkvk γ(v1, ...,vk,z1, ...,zr) ∈ QCNF∗

with γ ∈ (k -)HORN after removing all literals over free variables.

Another possibility is to enforce the Horn property only on the existential and
free variables. Accordingly, Q(k -)EHORN∗ contains all formulas

Ω(z1, ...,zr) = Q1v1...Qkvk ω(v1, ...,vk,z1, ...,zr) ∈ QCNF∗

for which ω ∈ (k -)HORN after removing all universal literals. As before, we
omit the star ∗ and write Q(k -)EHORN if only formulas without free variables
are considered.

A.3.4. Existential Prefix ∃(k -)HORN(∗),∃(k -)HORNb

With ∃(k -)HORN (∃(k -)HORN∗, ∃(k -)HORNb, respectively), we denote the
subclass of Q(k -)HORN (Q(k -)HORN∗, Q(k -)HORNb, respectively) with purely
existential prefix.
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A.3.5. Renamings ren-Q(k -)(E)HORN(∗),ren-Q(k -)HORNb

Let QK ∈ {Q(k -)HORN(∗),Q(k -)HORNb,Q(k -)EHORN(∗)} be one of the pre-
viously defined classes of (generalized) quantified Horn formulas. With ren-QK,
we denote formulas Π for which there exists a renaming of literals, i.e. a func-
tion f : literals(Π)→ literals(Π) with f (l) ∈ {¬l, l} and f (¬l)≈ ¬ f (l) for all
l ∈ literals(Π), such that Π[l/ f (l)] ∈ QK when the renaming is applied to all
literals.

A.4. Dependency Quantified Formulas

A.4.1. Base Classes DQBF,DQBF∗

A dependency quantified Boolean formula Φ ∈ DQBF with universal variables
x = (x1, ...,xn) and existential variables y = (y1, ...,ym) (n,m ≥ 0) is a formula
of the form

Φ = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) φ(x,y)

where dependency lists xdi := (xdi,1 , ...,xdi,ni
), 1≤ di, j ≤ n, indicate the universal

variables xdi, j on which an existential variable yi depends. The matrix φ is a
propositional formula over the quantified variables.

As before, a star ∗ indicates that free variables are allowed, so DQBF∗ is the
class of formulas

Ψ = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) ψ(x,y,z)

with a matrix ψ over universal variables x = (x1, ...,xn), existential variables
y = (y1, ...,ym) and free variables z = (z1, ...,zr).

A.4.2. Normal Forms
DQNNF(∗),DQ(k -)CNF(∗),DQ(k -)DNF(∗)

Let K ∈ {NNF,CNF,k-CNF,DNF,k-DNF} be a propositional normal form. By
DQK (DQK∗ if free variables are allowed), we denote the corresponding sub-
class of DQBF (DQBF∗, respectively) that contains all formulas whose matrix
is in K.
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A.4.3. Dependency Quantified Horn Formulas
DQ(k -)HORN(∗),DQ(k -)HORNb

A dependency quantified (k-)Horn formula Φ ∈ DQ(k -)HORN with universal
variables x = (x1, ...,xn) and existential variables y = (y1, ...,ym) (n,m≥ 0) is a
formula of the form

Φ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y)

with φ ∈ (k -)HORN. We write DQ(k -)HORN∗ if φ can contain free variables.

DQ(k -)HORNb denotes formulas of the form

Ψ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) ψ(x,y,z)

with universal variables x = (x1, ...,xn), existential variables y = (y1, ...,ym) and
free variables z = (z1, ...,zr), such that ψ ∈ (k -)HORN after removing all literals
over free variables.

A.4.4. Restrictions on the Structure of Dependencies
DpoQBF(∗),DlogQBF(∗),DkQBF(∗)

DpoQBF∗ is the class of dependency quantified Boolean formulas

Φ(z) = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ(x,y,z)

with polynomially orderable dependencies, that means∣∣∣∣∣ ⋃
1≤ j<k≤m

(xds j
\xdsk

)

∣∣∣∣∣ ∈ O(log |Φ|)

for some ordering S = (s1, ...,sm) ∈ {1, ...,m}m on the dependencies.

With DlogQBF∗, we denote the class of dependency quantified Boolean formulas
with logarithmic dependencies. That is, formulas

Ψ(z) = ∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1
)...∃ym(xdm,1 , ...,xdm,nm

) ψ(x,y,z)

with n1, ...,nm ∈ O(log |Ψ|), such that each existential variable depends on at
most logarithmically many universals.
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For fixed k ≥ 0, DkQBF∗ ⊆ DlogQBF∗ is the class of dependency quantified
Boolean formulas in which each existential variable can depend on at most k
universal variables. That means n1, ...,nm ≤ k for formulas with a prefix of
∀x1...∀xn∃y1(xd1,1 , ...,xd1,n1

)...∃ym(xdm,1 , ...,xdm,nm
).

Again, we omit the star ∗ and write DpoQBF, DlogQBF or DkQBF, respectively,
if free variables are excluded.
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B. Abstract

Quantified Boolean formulas (QBF or QBF∗ with free variables) generalize
propositional logic by allowing variables to be quantified universally or exis-
tentially. This enhancement allows problems from many areas, such as plan-
ning or verification, to be encoded in a natural way. The resulting formulas are
often significantly more compact than their propositional equivalents, but also
more difficult to solve. Not all usage patterns of quantifiers seem equally effec-
tive, which makes it important to balance clarity and conciseness versus decision
complexity. The contributions in this thesis support that tradeoff by providing

• relationships between formula structure and quantifier expressiveness,

• preprocessing that eliminates weak quantifiers,

• useful subclasses with lower complexity,

• and suitable modeling patterns.

We show that there exist close connections between the clause structure, the
structure of Boolean function models, which describe the behavior of quantifiers,
and the method of universal quantifier expansion for simplifying prefixes.

In particular, we consider quantified Horn formulas (QHORN) and generaliza-
tions thereof. For these formulas, we prove that the behavior of the existential
quantifiers depends only on the cases where at most one of the universally quan-
tified variables is zero, which allows a transformation into short purely existen-
tially quantified formulas and the computation of satisfiability models in time
O(|∀| · |Φ|) for formulas of length |Φ| with |∀| universal quantifiers. We extend
our results to formulas with free variables (QHORN∗) and show that they have
monotone equivalence models. A further extension is possible to clausal for-
mulas with free variables where only the quantified variables satisfy the Horn
property. We prove that any such formula Φ ∈ QHORNb can be transformed
in time O(|∀| · |Φ|) into an equivalent formula of length O(|∀| · |Φ|) which has
only existential quantifiers. It is demonstrated that these formulas can be used
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B. Abstract

to encode graph structures and propositional CNF transformations in a natural
way, which leads to a new compact graph-based CNF transformation. It nicely
preserves and visualizes the structure of the propositional input formula and re-
quires only two existentially quantified variables per clause (∃2-HORNb).

For arbitrary QCNF or QCNF∗ formulas, we show that the arity of model func-
tions can be restricted by computing transitive closures of local connectivity
between variables in common clauses in consideration of variable polarity. Our
dependency concept is more compact than existing approaches, in the best case
by an arbitrarily large factor. This allows us to significantly reduce the amount of
copying required by universal expansion and makes it feasible to expand quan-
tifiers from arbitrary scopes. On the basis of these expansion refinements, we
present a preprocessing of QCNF∗ formulas by expanding a selection of uni-
versal variables with bounded expansion costs. We describe a suitable selection
strategy which combines cost estimates with goal orientation, and we also in-
tegrate Q-resolution specifically to further reduce the costs of expansion steps.
Experiments with well-known problems from the QBFLIB formula collection
demonstrate that this preprocessing is very effective on simplifying the prefixes
and can significantly improve the performance of state-of-the-art QBF solvers.

An alternative to recovering variable dependencies from given formulas is to ex-
tend quantified Boolean formulas with explicitly given dependencies. Such de-
pendency quantified Boolean formulas (DQBF or DQBF∗) allow novel and even
more concise modeling patterns, which we demonstrate with a new encoding of
the well-known bounded reachability problem for directed graphs. For 2n ver-
tices, it requires only O(n) variables, in contrast to O(n2) (but in an unbounded
number of quantifier blocks) or even O(2n) in existing QBF∗ approaches.

While dependency quantification generally causes an increase in complexity, we
consider easier subclasses with restrictions on the prefix structure. We show that
formulas with dependencies of bounded or at most logarithmic size (DkQBF∗ or
DlogQBF∗) have ΣP

2 -complete satisfiability problems, and formulas with polyno-
mially orderable dependencies (DpoQBF∗) are presented as a PSPACE-complete
generalization of QBF∗. We also show that important techniques like univer-
sal quantifier expansion can be lifted naturally to these formulas and that Horn
formulas remain tractable with dependency quantification. It follows that depen-
dency quantified Horn formulas with unrestricted free variables (DQHORNb) are
as expressive as QHORNb or purely existentially quantified ∃HORNb formulas:
DQHORNb =poly−time QHORNb =poly−time ∃HORNb.
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