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Introduction 

Section 1 



Quantified Boolean Formulas 1/2 
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QBF extends propositional logic by allowing universal 

and existential quantifiers over propositional variables. 

Inductive definition: 

1. Every propositional formula is a QBF. 

2. If Φ is a QBF then ∀𝑥Φ and ∃𝑦Φ are also QBFs. 

3. If Φ1 and Φ2  are QBFs then ¬Φ1, Φ1 ∧ Φ2 and 

Φ1 ∨ Φ2 are also QBFs. 



Quantified Boolean Formulas 2/2 
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In a closed QBF, every variable is quantified. 

Semantics definition for closed QBF: 

∃𝑦 Φ 𝑦  is true if and only if 

Φ 𝑦/0  is true or Φ 𝑦/1  is true. 

∀𝑥 Φ 𝑥  is true if and only if 

Φ 𝑥/0  is true and Φ 𝑥/1  is true. 

A closed QBF is 

either true or false. 



Prenexing 

Closed QBFs Φ and Ψ are logically equivalent (Φ ≈ Ψ) 

⇔ they are satisfiability equivalent 

⇔ they both evaluate to the same truth value. 

Every QBF can be transformed in linear time into a 

logically equivalent prenex formula 𝑄1𝑣1…𝑄𝑘𝑣𝑘  𝜙 by: 

1. renaming quantified variables, 

2. transformation into negation normal form (NNF), 

3. moving quantifiers to the front by maxiscoping: 

 𝑄𝑣 Φ ∘ Ψ ≈ 𝑄𝑣 (Φ ∘ Ψ) for ∘ ∈ {∧,∨} and 𝑄 ∈ ∀, ∃ . 
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∀𝑥 Φ ∧ (∃𝑦 Ψ) 

which one first? 

Refined strategies and comparisons in [Egly / Seidl et al., 2004] 



Tree Models: Definition 
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A closed prenex QBF 𝑄1𝑣1…𝑄𝑘𝑣𝑘 𝜙  is true if and only if 

there exists a tree such that: [Samulowitz et. al., 2006] 

1. Each inner node is labeled with a variable 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑘, 

its outgoing edges are labeled with 𝑣𝑖 = 0 or 𝑣𝑖 = 1. 

2. Inner nodes labeled with 𝑣𝑖 have two children if and 

only if 𝑄𝑖 = ∀, and one child otherwise. 

3. For each path from root to leaf labeled with (𝑣𝑖1 , … , 𝑣𝑖𝑗), 

we have 1 ≤ 𝑖1 < ⋯ < 𝑖𝑗 ≤ 𝑘 (i.e. order as in the prefix). 

4. On each path from root to leaf, the edge labels are a 

satisfying assignment to the propositional matrix 𝜙. 



Tree Models: Definition 
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A closed prenex QBF 𝑄1𝑣1…𝑄𝑘𝑣𝑘 𝜙  is true if and only if 

there exists a tree such that: [Samulowitz et. al., 2006] 

1. Each inner node is labeled with a variable 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑘, 

its outgoing edges are labeled with 𝑣𝑖 = 0 or 𝑣𝑖 = 1. 

2. Inner nodes labeled with 𝑣𝑖 have two children if and 

only if 𝑄𝑖 = ∀, and one child otherwise. 

3. For each path from root to leaf labeled with (𝑣𝑖1 , … , 𝑣𝑖𝑗), 

we have 1 ≤ 𝑖1 < ⋯ < 𝑖𝑗 ≤ 𝑘 (i.e. order as in the prefix). 

4. On each path from root to leaf, the edge labels are a 

satisfying assignment to the propositional matrix 𝜙. 



Tree Models: Example 

Example: ∀𝑥1∃𝑦1∀𝑥2∃𝑦2 𝑥1 ∨ ¬𝑦2 ∧ ¬𝑥1 ∨ 𝑦2 ∧ 𝑦1 ∨ 𝑥2  
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = ? 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 



Tree Models: Example 

Example: ∀𝑥1∃𝑦1∀𝑥2∃𝑦2 𝑥1 ∨ ¬𝑦2 ∧ ¬𝑥1 ∨ 𝑦2 ∧ 𝑦1 ∨ 𝑥2  
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𝑥1 

𝑦1 
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𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 1 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 𝑦2 = ? 



Tree Models: Example 
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 1 𝑦1 = ? 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 
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Tree Models: Example 

Example: ∀𝑥1∃𝑦1∀𝑥2∃𝑦2 𝑥1 ∨ ¬𝑦2 ∧ ¬𝑥1 ∨ 𝑦2 ∧ 𝑦1 ∨ 𝑥2  
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𝑥1 

𝑦1 

𝑥2 

𝑦1 

𝑦2 𝑦2 𝑦2 𝑦2 

𝑥2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 1 𝑦1 = 1 

𝑥2 = 0 𝑥2 = 1 𝑥2 = 0 𝑥2 = 1 

𝑦2 = 0 𝑦2 = 0 𝑦2 = 1 𝑦2 = 1 



Tree Models: Example 
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𝑥1 

𝑦1 𝑦1 

𝑦2 𝑦2 

𝑥1 = 0 𝑥1 = 1 

𝑦1 = 1 𝑦1 = 1 

𝑦2 = 0 𝑦2 = 1 

Universal Reduction 



Tree Models: Generalization 

The requirement that variables must appear in the same 

order as in the prefix (rule 3) can be further relaxed: 

• by grouping similar quantifiers into quantifier blocks. 

∀𝑣1…∀𝑣𝑛1∃𝑣𝑛1+1…∃𝑣𝑛2∀𝑣𝑛2+1…∀𝑣𝑛3 …𝜙  

 

• by considering variable dependency schemes. 
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𝑆1 𝑆2 𝑆3 



Dependency Schemes 1/2 

Consider the following formula: 

∀𝑥∃𝑦1∀𝑢∃𝑦2∃𝑦3 [ 𝑥 ∨ 𝑢 ∨ 𝑦3 ∧ 𝑦1 ∨ 𝑦3 ∧ 

¬𝑦1 ∨ ¬𝑦3 ∧ ¬𝑢 ∨ ¬𝑦3 ∧ (¬𝑦1 ∨ ¬𝑦2)] 

Which variables must be above 𝑦2 in the tree without 

altering the truth value of the formula? 

In general: 

dependency decision problem is PSPACE-complete. 

[Samer / Szeider, 2007] 
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Dependency Schemes 2/2 

∀𝑥∃𝑦1∀𝑢∃𝑦2∃𝑦3 [ 𝑥 ∨ 𝑢 ∨ 𝑦3 ∧ 𝑦1 ∨ 𝑦3 ∧ 

¬𝑦1 ∨ ¬𝑦3 ∧ ¬𝑢 ∨ ¬𝑦3 ∧ (¬𝑦1 ∨ ¬𝑦2)] 

One simple heuristic: recovering non-prenex structure: 

∀𝑥∃𝑦1[[∀𝑢∃𝑦3 𝑥 ∨ 𝑢 ∨ 𝑦3 ∧ 𝑦1 ∨ 𝑦3 ∧ ¬𝑦1 ∨ ¬𝑦3 ∧ ¬𝑢 ∨ ¬𝑦3 ]

 ∧ [∃𝑦2 ¬𝑦1 ∨ ¬𝑦2 ]] 

• Identified informally by [Biere, 2004], 

• Formalized in [Samer / Szeider, 2007], 

[Bubeck / Kleine Büning, 2007], 

• Currently tightest scheme by [van Gelder, 2011]. 

Still no practicable algorithm for computing tight schemes! 
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Free Variables 

and Equivalence 

Section 2 



Semantics of Free Variables 1/2 
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A focus of this talk is to allow free variables. 

Notation: 

• Φ 𝑧1, … , 𝑧𝑛  for formula Φ with free variables 𝑧1, … , 𝑧𝑛. 

• QBF* is the class of quantified Boolean formulas with 

free variables. 

The valuation of a QBF* depends on the values of the 

free variables: 

Φ 𝑧1, … , 𝑧𝑛 ∈ QBF
∗ is satisfied by a truth assignment 

𝑡: 𝑧1, … , 𝑧𝑛 → 0,1  if and only if 

Φ 𝑡(𝑧1), … , 𝑡(𝑧𝑛) ≔ Φ[𝑧1/𝑡 𝑧1 , … , 𝑧𝑛/𝑡 𝑧𝑛 ] is true. 



Semantics of Free Variables 2/2 
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Example: 

Φ 𝑎, 𝑏, 𝑐, 𝑑 := ∃𝑦 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  

Then 

Φ 0,1,0,1 = ∃𝑦 0 ∨ 𝑦 ∧ 1 ∨ 𝑦 ∧ (¬𝑦 ∨ 0 ∨ 1) is true, 

Φ 0,1,0,0 = ∃𝑦 0 ∨ 𝑦 ∧ 1 ∨ 𝑦 ∧ (¬𝑦 ∨ 0 ∨ 0) is false, 

etc. 

→ ∃𝑦 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  is true if and only if 

𝑎 ∨ 𝑐 ∨ 𝑑 ∧ 𝑏 ∨ 𝑐 ∨ 𝑑  is true. 

→ Every QBF* is equivalent to a propositional formula. 



Logical Equivalence 
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Propositional or quantified Boolean formulas 𝛼 and 𝛽 

with (free) variables 𝑧1, … , 𝑧𝑛 are logically equivalent, 

written as 𝛼 𝑧1, … , 𝑧𝑛 ≈ 𝛽(𝑧1, … , 𝑧𝑛),  if and only if 

𝛼 𝑡(𝑧1), … , 𝑡(𝑧𝑛) = 𝛽(𝑡(𝑧1), … , 𝑡(𝑧𝑛)) for each truth 

assignment 𝑡 to 𝑧1, … , 𝑧𝑛. 

→ Quantified variables are not directly considered for 

logical equivalence. They can be seen as local within 

the respective formula. 

 



Satisfiability Equivalence 
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𝑎 ∨ 𝑐 ∨ 𝑑 ∧ 𝑏 ∨ 𝑐 ∨ 𝑑 ≈ ∃𝑦 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  

Without quantifier: 

𝑎 ∨ 𝑐 ∨ 𝑑 ∧ 𝑏 ∨ 𝑐 ∨ 𝑑 ≉ 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  

Problem: 

𝑎 = 𝑏 = 1, 𝑐 = 𝑑 = 0, 𝑦 = 1 satisfies left, but not right side. 

Relaxation: satisfiability equivalence 

𝑎 ∨ 𝑐 ∨ 𝑑 ∧ 𝑏 ∨ 𝑐 ∨ 𝑑 ≈𝑆𝐴𝑇 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  

Existence of a satisfying assignment for one side implies 

there is some satisfying assignment for the other side. 

     



Equivalence and Rewriting 
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For propositional formulas 𝛼, 𝛽, 𝛾, it holds that 

𝛽 ≈ 𝛾 ⇒  𝛼 ≈ 𝛼 𝛽/𝛾 . 

→ Parts of a formula can be replaced with logically 

equivalent formulas. 

But: 𝛽 ≈𝑆𝐴𝑇 𝛾 ⇏  𝛼 ≈𝑆𝐴𝑇 𝛼 𝛽/𝛾 . 

→ Satisfiability equivalence is sometimes too weak. 



Complexity 

Section 3 



QBF* Complexity 1/2 

Well known: the decision problem for QBF and the 

satisfiability problem for QBF* are PSPACE-complete. 

[Meyer / Stockmeyer, 1973] 

→  QBF* consequence and equivalence problems are 

 also PSPACE-complete. 

→  QDNF* remains PSPACE-complete. 

Some verification problems are also PSPACE-complete: 

• Propositional LTL satisfiability  [Sistla / Clarke, 1985] 

• Symbolic reachability in sequential circuits  [Savitch, 1970] 
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QBF* Complexity 2/2 

Typical approaches to reduce the complexity: 

• Restriction of the matrix to special classes of 

propositional formulas 

• Bounding of quantifier alternations in the prefix: 
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𝑘 quantifier blocks, 

outermost existential: 

 

prefix type Σ𝑘 

∃…∃∀…∀∃…∃…  𝜙 

𝑘 quantifier blocks, 

outermost universal: 

 

prefix type Π𝑘 

∀…∀∃…∃∀…∀…  𝜙 



Polynomial-time Hierarchy 

Well-known relationship with polynomial-time hierarchy: 

For fixed 𝑘 ≥ 1, the satisfiability problem for QBF* with 

prefix type Σ𝑘 is Σ𝑘
𝑃-complete, and Π𝑘

𝑃-complete for prefix 

type Π𝑘.  

[Stockmeyer, 1976] 

 

Δ0
𝑃 ≔ Σ0

𝑃 ≔ Π0
𝑃 ≔ 𝑃 

Σ𝑘+1
𝑃 ≔ 𝑁𝑃Σk

P
, Π𝑘+1

𝑃 ≔ 𝑐𝑜 − Σ𝑘+1
𝑃 , Δ𝑘+1 

𝑃 ≔ 𝑃Σk
P
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Schaefer‘s Dichotomy Theorem 
Consider a quantified constraint expression 

𝑄1𝑦1…𝑄𝑛𝑦𝑛  𝑓1 𝑥1,1, … , 𝑥1,𝑚1 ∧ ⋯∧ 𝑓𝑘 𝑥𝑘,1, … , 𝑥𝑘,𝑚𝑘  

with 𝑄1, … , 𝑄𝑛 ∈ {∀, ∃}, Boolean functions 𝑓1, … , 𝑓𝑘 ∈ 𝐶 

and arguments 𝑥𝑖,𝑗 ∈ 𝑦1, … , 𝑦𝑛 ∪ {0,1}. 

Dichotomy Theorem: 

Let 𝐶 be a finite set of constraints. If 𝐶 is Horn, anti-Horn, 

bijunctive / Krom (equiv. to 2-CNF) or affine (equiv. to 

XOR-CNF) then 𝑄𝑆𝐴𝑇𝑐 𝐶  is in P. 

Otherwise, 𝑄𝑆𝐴𝑇𝑐 𝐶  is PSPACE-complete. 

[Schaefer, 1978], [Dalmau, 1997] [Creignou / Khanna et al., 2001] 
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QHORN* and Q2-CNF* 

• QHORN* is the class of QCNF* formulas with at most 

one positive literal per clause. 

QHORN* satisfiability is decidable in quadratic time 

𝑂( ∀ ⋅ Φ ), where ∀  is the number of universal 

variables and Φ  the formula length. 

Algorithm: by unit propagation   [Flögel et al. 1995] 

or by universal expansion  [Bubeck / Kleine Büning, 2008] 

• Q2-CNF* satisfiability is decidable in linear time. 

Algorithm: by strongly connected components 

[Aspvall et al., 1979] 
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Expressiveness 

Section 4 



Other Representations 
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We can also define logical equivalence with other 

representations of Boolean functions: 

𝑐 𝑑 𝑎 𝑏 

 

 

 

 

≈ 𝑎 ∨ 𝑐 ∨ 𝑑 ∧ 𝑏 ∨ 𝑐 ∨ 𝑑  
 
≈ ∃𝑦 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  

For each assignment to 𝑎, 𝑏, 𝑐, 𝑑, 

all three representations evaluate 

to the same truth value. 



Quantified Encodings 1/2 
Main Theme: 

How compact are encodings in QBF* (or subclasses) 

versus other logically equivalent representations? 

Encoding Techniques: 

1. Abbreviate exact repetitions by existential variables: 

𝐴 ∨ ¬𝐵 ∨ 𝐶 ∨ 𝐷 ∧ 𝐴 ∨ ¬𝐵 ∨ 𝐶 ∨ ¬𝐸 ∧ 𝐴 ∨ ¬𝐵 ∨ 𝐶 ∨ 𝐹   

≈ ∃𝑦 𝑦 ↔ 𝐴 ∨ ¬𝐵 ∨ 𝐶 ∧ 𝑦 ∨ 𝐷 ∧ 𝑦 ∨ ¬𝐸 ∨ 𝑦 ∨ 𝐹  

Simple implication if term occurs only in one polarity: 

∃𝑦 𝑦 → 𝐴 ∨ ¬𝐵 ∨ 𝐶 ∧ 𝑦 ∨ 𝐷 ∧ 𝑦 ∨ ¬𝐸 ∨ 𝑦 ∨ 𝐹   

(quantified versions of [Tseitin, 1970] and [Plaisted, 1986]) 
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Quantified Encodings 2/2 
2. Compress conjunctions of renamings / instantiations 

by universal variables: 

𝜙 𝐴1, 𝐵1 ∧ 𝜙 𝐴2, 𝐵2 ∧ 𝜙 𝐴3, 𝐵3  

≈ ∀𝑢∀𝑣  𝑢 ↔ 𝐴𝑖 ∧ 𝑣 ↔ 𝐵𝑖
𝑖=1…3

→ 𝜙 𝑢, 𝑣  

[Dershowitz et al., 2005], [Meyer/Stockmeyer, 1973] 

3. Iterative Squaring (Extension of 2.): 

Φ 𝑥0, 𝑥𝑛 = ∃𝑥1…∃𝑥𝑛−1 𝜙 𝑥0, 𝑥1 ∧ 𝜙 𝑥1, 𝑥2 ∧ ⋯∧ 𝜙 𝑥𝑛−1, 𝑥𝑛  

Encoding: 

Φ𝑛 𝑥0, 𝑥𝑛 ≔ ∃𝑦 Φ𝑛/2 𝑥0, 𝑦 ∧ Φ𝑛/2 𝑦, 𝑥𝑛  

≈ ∃𝑦∀𝑢∀𝑣 𝑢 ↔ 𝑥0 ∧ 𝑣 ↔ 𝑦 ∨ 𝑢 ↔ 𝑦 ∧ 𝑣 ↔ 𝑥𝑛 → Φ𝑛/2 𝑢, 𝑣  

[Meyer/Stockmeyer, 1973] 
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Nested Instantiations 1/3 

Instantiations might also be nested: 

𝐴1 ∧ 𝐴2 ∨ ¬𝐴1 ∧ ¬𝐴2 → 𝐵1 ∧ 𝐵2 ∨ ¬𝐵1 ∧ ¬𝐵2  

is of the form 𝜓(𝜙 𝐴1, 𝐴2 , 𝜙 𝐵1, 𝐵2 ). 

Other example: Parity of 𝑛 Boolean variables 

𝑓0 𝑝1, 𝑝2 ≔ ¬𝑝1 ∧ 𝑝2 ∨ 𝑝1 ∧ ¬𝑝2  

𝑓1 𝑝1, 𝑝2, 𝑝3, 𝑝4 ≔ 𝑓0 𝑓0 𝑝1, 𝑝2 , 𝑓0 𝑝3, 𝑝4  

𝑓2 𝑝1, … , 𝑝16 ≔ 𝑓1(𝑓1 𝑝1, … , 𝑝4 , … , 𝑓1 𝑝13, … , 𝑝16 ) 

log2 log2 𝑛 + 1 definitions of size 𝑂(𝑛). 
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Nested Instantiations 2/3 

General Definition: A Nested Boolean Function (NBF) 

is a sequence of functions D 𝑓𝑘 = (𝑓0, … , 𝑓𝑘) with 

• initial functions 𝑓0, … , 𝑓𝑡 defined by 𝑓𝑖(𝒙
𝑖) ≔ 𝛼𝑖(𝒙

𝑖) 

for a propositional formula 𝛼𝑖 over 𝒙𝑖 ≔(𝑥𝑖,1, … , 𝑥𝑖,𝑛𝑖) 

• compound functions 𝑓𝑡+1, … , 𝑓𝑘 of the form  

𝑓𝑖 𝒙
𝑖 ≔ 𝑓𝑗0(𝑓𝑗1(𝒙1

𝑖 ), … , 𝑓𝑗𝑟(𝒙𝑟
𝑖 )) with previously defined 

functions 𝑓𝑗0
, … , 𝑓𝑗𝑟 and matching tuples 𝒙1

𝑖 , … , 𝒙𝑟
𝑖  over 

variables from 𝒙𝑖 or Boolean constants. 

   [Bubeck / Kleine Büning, 2012], [Cook / Soltys, 1999] 
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Nested Instantiations 3/3 

• By clever combination of previously presented 

encoding techniques, every NBF can be transformed in 

linear time into a logically equivalent prenex QBF*. 

[Bubeck / Kleine Büning, 2012] 

• The inverse direction is very simple by simulating 

quantifier expansion, but length increases slightly to 

𝑂( 𝑣 ⋅ Φ ) for a QBF* Φ with |𝑣| quantified variables. 

• Application: Configuration Problems (→ Talk by Hans) 

• Future Work: Solvers, interesting NBF subclasses 
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Circuits and Existential Quantifiers 
There is a close connection between fan-out in Boolean 

circuits and existential quantification: 

1. Transformation from circuit to formula 
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𝑐 𝑑 𝑎 𝑏 

 

 

 

 

𝑦1 𝑦2 𝑦3 𝑦4 

𝑦5 

𝑦6 𝑦7 

𝑦8 

𝑎 ∨ 𝑦1 ∧ c ∨ 𝑦2 ∧ 
𝑑 ∨ 𝑦3 ∧ 𝑏 ∨ 𝑦4 ∧ 

𝑦2 ∧ 𝑦3 → 𝑦5 ∧ 

𝑦1 ∧ 𝑦5 → 𝑦6 ∧ 
𝑦5 ∧ 𝑦4 → 𝑦7 ∧ 
𝑦6 ∨ 𝑦7 → 𝑦8 ∧ 
¬𝑦8 

∃𝑦1…∃𝑦8 

[Bauer / Brand et al., 1973] [Anderaa / Börger, 1981] 



Circuits and Existential Quantifiers 
There is a close connection between fan-out in Boolean 

circuits and existential quantification: 

1. Transformation from circuit to formula 
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𝑐 𝑑 𝑎 𝑏 

 

 

 

 

𝑦1 𝑦2 𝑦3 𝑦4 

𝑦5 

𝑦6 𝑦7 

𝑦8 

𝑎 ∨ 𝑦1 ∧ c ∨ 𝑦2 ∧ 
𝑑 ∨ 𝑦3 ∧ 𝑏 ∨ 𝑦4 ∧ 

¬𝑦2 ∨ ¬𝑦3 ∨ 𝑦5 ∧ 

¬𝑦1 ∨ ¬𝑦5 ∨ 𝑦6 ∧ 
¬𝑦5 ∨ ¬𝑦4 ∨ 𝑦7 ∧ 
¬𝑦6 ∨ 𝑦8) ∧ (¬𝑦7 ∨ 𝑦8 ∧ 
¬𝑦8 

∃𝑦1…∃𝑦8 

≈ ∃𝑦 𝑎 ∨ 𝑦 ∧ 𝑏 ∨ 𝑦 ∧ ¬𝑦 ∨ 𝑐 ∨ 𝑑  



The Class HORNb 

• The previous linear transformation produces 

existentially quantified formulas in CNF with at most 

one positive bound variable per clause (i.e. the bound 

variables respect the Horn property). 

We call such formulas HORNb. 

• General: for QK ⊆ QCNF, QKb is the class of formulas 

Φ 𝑧1, … , 𝑧𝑛 = 𝑄1𝑣1…𝑄𝑚𝑣𝑚 ∧𝑖 𝜙𝑖
𝑏(𝑣1, … , 𝑣𝑚) ∨ 𝜙𝑖

𝑓
(𝑧1, … , 𝑧𝑛)  

where 𝑄1𝑣1…𝑄𝑚𝑣𝑚 ∧𝑖 𝜙𝑖
𝑏(𝑣1, … , 𝑣𝑚) is a formula in QK, 

and 𝜙𝑖
𝑓
(𝑧1, … , 𝑧𝑛) an arbitrary clause over free variables. 
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Circuits and Existential Quantifiers 

2. Transformation from formula to circuit 

Any HORNb formula can be transformed in polynomial 

time into a logically equivalent Boolean circuit. 

[Anderaa / Börger, 1981] [Kleine Büning / Zhao / Bubeck, 2009] 

→ HORNb and circuits have similar expressiveness. 
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HORNb vs Propositional Formulas 

There are HORNb (even HORN*) formulas for which 

there is no logically equivalent propositional CNF of 

polynomial length. 

[Kleine Büning / Lettmann, 1999] 

Is a polynomial-length transformation from HORNb  to 

arbitrary propositional formulas possible? 

Equivalent: Are circuits with unrestricted fan-out more 

expressive than with fan-out 1? 
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HORNb vs QHORNb 

Can the expressive power of HORNb be enhanced by 

universal quantification? 

Not significantly. For every Φ ∈ QHORNb with ∀  

universal quantifiers, there exists a logically equivalent 

HORNb formula of quadratic length 𝑂(|∀| ⋅ Φ ) 

which can be computed also in time 𝑂(|∀| ⋅ Φ ). 

[Bubeck, 2010] 

That means QHORNb satisfiability is NP-complete. 
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Minimal Falsity and Quantification 

A closed QCNF formula is minimal false (MF) iff it is 

false and removing an arbitrary clause makes it true. 

Example: 

∀𝑥∃𝑦0∃𝑦1 𝑦0 ∨ 𝑧0 ∧ ¬𝑦0 ∨ 𝑧1 ∧ ¬𝑦0 ∨ 𝑧2 ∧ 𝑦1 ∨ 𝑧3 ∧ 𝑥 ∨ 𝑧4  

Bound parts: ∀𝑥∃𝑦0∃𝑦1 (𝑦0) ∧ (¬𝑦0) ∧ (¬𝑦0) ∧ (𝑦1) ∧ (𝑥) 

MF subformulas: 

1.  ∃𝑦0 (𝑦0) ∧ (¬𝑦0) 

2.  ∃𝑦0 (𝑦0) ∧ (¬𝑦𝑜) 

3.  ∀𝑥 (𝑥) 
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Minimal Falsity and Quantification 

∀𝑥∃𝑦0∃𝑦1 𝑦0 ∨ 𝑧0 ∧ ¬𝑦0 ∨ 𝑧1 ∧ ¬𝑦0 ∨ 𝑧2 ∧ 𝑦1 ∨ 𝑧3 ∧ 𝑥 ∨ 𝑧4  

Bound parts: ∀𝑥∃𝑦0∃𝑦1 (𝑦0) ∧ (¬𝑦0) ∧ (¬𝑦0) ∧ (𝑦1) ∧ (𝑥) 

MF subformulas: 

1.  ∃𝑦0 (𝑦0) ∧ (¬𝑦0) 

2.  ∃𝑦0 (𝑦0) ∧ (¬𝑦𝑜) 

3.  ∀𝑥 (𝑥) 

For each MF subformula, one of the corresponding free 

parts must be satisfied. 

So the formula is equivalent to 𝑧0 ∨ 𝑧1 ∧ 𝑧0 ∨ 𝑧2 ∧ 𝑧4. 
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Corresponding bound parts: 

1.  𝑧0, 𝑧1 

2.  𝑧0, 𝑧2 

3.  𝑧4 



Minimal Falsity and Quantification 

MF subformulas of the bound parts determine the role of 

the free parts in QCNF* formulas: 

𝑄  𝜙𝑖
𝑏 ∨ 𝜙𝑖

𝑓
≈  𝜙𝑖1

𝑓
∨ ⋯∨ 𝜙𝑖𝑟

𝑓

𝑄 𝜙𝑖1
𝑏 ∧⋯∧𝜙𝑖𝑟

𝑏 ∈𝑀𝐹1≤𝑖≤𝑞

 

 

 

[Bubeck / Kleine Büning, 2010] 

How do restrictions on the structure of the MF skeleton 

influence the expressiveness? 
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all MF subformulas 

of the bound parts 



Conclusion 

Section 5 



Conclusion 

• Free variables are nothing to be afraid of.  

• Compared to propositional logic, there is a very rich 

set of QBF* subclasses. 

• How do these subclasses differ in expressiveness? 

Is there a hierarchy 

PROP <𝑝𝑜𝑙𝑦−𝑙𝑒𝑛 HORNb <𝑝𝑜𝑙𝑦−𝑙𝑒𝑛 CNF* <𝑝𝑜𝑙𝑦−𝑙𝑒𝑛  

CNF* ... ? 

• How are these classes related to other 

representations, e.g. circuits? 
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