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Abstract. Dependency quantified Boolean formulas (DQBF ) extend
quantified Boolean formulas with Henkin-style partially ordered quan-
tifiers. It has been shown that this is likely to yield more succinct rep-
resentations at the price of a computational blow-up from PSPACE to
NEXPTIME. In this paper, we consider dependency quantified Horn
formulas (DQHORN ), a subclass of DQBF, and show that the compu-
tational simplicity of quantified Horn formulas is preserved when adding
partially ordered quantifiers.
We investigate the structure of satisfiability models for DQHORN for-
mulas and prove that for both DQHORN and ordinary QHORN for-
mulas, the behavior of the existential quantifiers depends only on the
cases where at most one of the universally quantified variables is zero.
This allows us to transform DQHORN formulas with free variables into
equivalent QHORN formulas with only a quadratic increase in length.
An application of these findings is to determine the satisfiability of a
dependency quantified Horn formula Φ with |∀| universal quantifiers in
time O(|∀| · |Φ|), which is just as hard as QHORN -SAT.

1 Introduction

The language of Quantified Boolean Formulas (QBF ) offers a concise way to
represent formulas which arise in areas such as planning, scheduling or verifica-
tion [15, 17]. QBF formulas are usually assumed by definition to be in prenex
form such that all quantifiers appear at the beginning, and that is also the input
format generally required by QBF solvers. This does, however, impose a total
ordering on the quantifiers where each existentially quantified variable depends
on all preceding universal variables. Consider the following example:

∀x1 [(∀x2∃y1φ(x1, x2, y1)) ∧ (∀x3∃y2ψ(x1, x3, y2))]



In this non-prenex formula, the choice for y1 depends on the values of x1 and
x2, and y2 depends on x1 and x3. Using quantifier rewriting rules, we can obtain
the equivalent prenex formula

∀x1∀x2∃y1∀x3∃y2 φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

As above, y1 depends on x1 and x2, but y2 now depends on x1, x2 and x3, so
we lose some of the structural information inherent in the original formula.

Recent experimental studies [7, 8] have shown that this problem may have a
considerable impact on the performance of QBF solvers. Accordingly, different
solutions have lately been suggested to overcome the problem, e.g. by recovering
lost information from the formula structure (in particular from the local con-
nectivity of variables in common clauses) [2, 3], or by extending QBF solvers to
directly handle non-prenex formulas [8].

Another solution has been proposed by Henkin [9] for first-order predicate
logic. He has introduced partially ordered quantifiers, called branching quantifiers
or simply Henkin quantifiers, as in the expression(

∀x1∀x2∃y1
∀x1∀x3∃y2

)
φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

which correctly preserves the dependencies from our introductory example. Since
the only relevant information is which universal quantifiers precede which exis-
tential quantifier, we can use a (typographically) simpler function-like notation
as follows:

∀x1∀x2∃y1(x1, x2)∀x3∃y2(x1, x3) φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

For each existential quantifier, we indicate the universal variables on which it
depends. Without loss of information, we can assume that the prefix is in the
form ∀∗∃∗:

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x1, x3) φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

This notation has been introduced for quantified Boolean formulas by Peterson,
Azhar and Reif [16] under the name Dependency Quantified Boolean Formulas
(DQBF).

Notice that partially ordered quantifiers do not only eliminate the afore-
mentioned loss of information due to prenexing, caused by flattening a tree-like
hierarchy of quantifiers and corresponding scopes into a linear ordering. The
Henkin approach is significantly more general than the suggestions above, be-
cause it allows to express subtle dependencies where the hierarchy of quantifier
scopes is no longer tree-like. For example, we could add an existential variable
y3 to our sample formula, such that y3 depends on x2 and x3 as indicated in the
following prefix:

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x1, x3)∃y3(x2, x3)



It is not clear how this prefix could be represented in a succinct QBF, even if
we allow non-prenex formulas.

Partially-ordered quantification has been around for quite some time, but
has not been widely used in combination with quantified Boolean formulas. This
is probably due to the fact that DQBF is NEXPTIME-complete, as has been
shown by Peterson, Azhar and Reif [16]. Assuming that NEXPTIME6=PSPACE,
this means that there are DQBF formulas for which no equivalent QBF of poly-
nomial length can be computed in polynomial space. It also means a jump in
complexity compared to QBF which is PSPACE-complete. The latter is already
considered quite hard, but continued research and the lifting of propositional
SAT techniques to QBF s have recently produced interesting improvements (see,
e.g., [3, 14, 18]) and have led to the emergence of more powerful QBF -SAT
solvers [13]. In addition, tractable subclasses of QBF have been identified and
investigated, e.g. QHORN, which contains all QBF formulas in conjunctive nor-
mal form (CNF ) whose clauses have at most one positive literal. This subclass
is important, because it is sufficient for expressing simple “if-then” statements,
and because QHORN formulas may occur as subproblems when solving arbitrary
QBF formulas [5].

In this paper, we consider dependency quantified Horn formulas (DQHORN ),
the dependency quantified equivalent to QHORN. Our main contribution is to
prove that DQHORN is a tractable subclass of DQBF and is in fact just as
difficult as QHORN. To be more precise, we present an algorithm which can
determine the satisfiability of a DQHORN formula Φ with free variables, |∀|
universal quantifiers and an arbitrary number of existential quantifiers in time
O(|∀| · |Φ|).

We achieve this by investigating the interplay of existential and universal
quantifiers with the help of satisfiability models. This concept has been intro-
duced in [12], and Section 3 shows how it can be extended for DQBF formulas.
We prove that for both DQHORN and ordinary QHORN, the behavior of the
existential quantifiers depends only on the cases where at most one of the uni-
versally quantified variables is zero. In Section 4, we demonstrate how DQBF
formulas with free variables can be transformed into equivalent QBF formulas
by expanding the universal quantifiers. This expansion may cause an exponential
blowup for arbitrary formulas. But the results from Section 3 allow us to avoid
this for DQHORN formulas with free variables by applying a generalization of
the special expansion method that we have presented in [4] for QHORN. Finally,
an algorithm for solving DQHORN -SAT is developed in Section 5.

2 Preliminaries

In this section, we recall the basic terminology and notation for QBF and intro-
duce DQBF.

A quantified Boolean formula Φ ∈ QBF in prenex form is a formula

Φ = Q1v1...Qkvk φ(v1, ..., vk)



with quantifiers Qi ∈ {∀,∃} and a propositional formula φ(v1, ..., vk) over vari-
ables v1, ..., vk. We call Q := Q1v1...Qkvk the prefix and φ the matrix of Φ.
Variables which are bound by universal quantifiers are called universal variables
and are usually given the names x1, ..., xn. Analogously, variables in the scope of
an existential quantifier are existential variables and have names y1, ..., ym. We
write Φ = Q φ(x,y) or simply Φ = Q φ.

Variables which are not bound by quantifiers are free variables. Formulas
without free variables are said to be closed. If free variables are allowed, we indi-
cate this with an additional star ∗ after the name of the formula class. Accord-
ingly, QBF is the class of closed quantified Boolean formulas, and QBF ∗ denotes
the quantified Boolean formulas with free variables. We write Φ(z) = Q φ(x,y, z)
or Φ(z) = Q φ(z) for a QBF ∗ formula with free variables z = (z1, ..., zr). A closed
QBF formula is either true or false, whereas the truth value of a QBF ∗ formula
depends on the value of the free variables. Two QBF ∗ formulas Ψ1(z1, ..., zr) and
Ψ2(z1, ..., zr) are said to be equivalent (Ψ1 ≈ Ψ2) if and only if Ψ1 |= Ψ2 and
Ψ2 |= Ψ1, where semantic entailment |= is defined as follows: Ψ1 |= Ψ2 if and only
if for all truth assignments t(z) := (t(z1), ..., t(zr)) ∈ {0, 1}r to the free variables
z = (z1, ..., zr), we have Ψ1(t(z)) = 1 ⇒ Ψ2(t(z)) = 1.

For DQBF formulas, we introduce a notation which allows us to quickly
enumerate the dependencies for a given existential variable yi (1 ≤ i ≤ m).
We are using indices di,1, ..., di,ni

which point to the ni universals on which yi
depends. For example, given the existential quantifier ∃y4(x3, x5), we say that
y4 depends on xd4,1 and xd4,2 with d4,1 = 3 and d4,2 = 5.

With this notation, a dependency quantified Boolean formula Φ ∈ DQBF
with universal variables x = (x1, ..., xn) and existential variables y = (y1, ..., ym)
is a formula of the form

Φ = ∀x1...∀xn∃y1(xd1,1
, ..., xd1,n1

)...∃ym(xdm,1
, ..., xdm,nm

)φ(x,y)

In Sections 4 and 5, we will also allow free variables, using the same notation
and definition of equivalence as for QBF ∗.

The class DQHORN contains all DQBF formulas in conjunctive normal form
(CNF ) whose clauses have at most one positive literal.

As stated in the following Definitions 1 and 2, the semantics of DQBF is
defined over model functions. A DQBF formula is said to be true if for each
existential variable yi, there exists a propositional formula fyi

over the universals
xdi,1

, ..., xdi,ni
on which yi depends, such that substituting the model functions

for the existential variables (and dropping the existential quantifiers) leads to a
universally quantified QBF formula which is true. The tuple M = (fy1 , ..., fym)
of such functions is called a satisfiability model.

Definition 1. For a dependency quantified Boolean formula Φ ∈ DQBF with
existential variables y = (y1, ..., ym), let M = (fy1

, ..., fym
) be a mapping which

maps each existential variable yi to a propositional formula fyi
over the universal

variables xdi,1 , ..., xdi,ni
on which yi depends. Then M is a satisfiability model

for Φ if the resulting QBF formula Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym ], where si-



multaneously each existential variable yi is replaced by its corresponding formula
fyi

and the existential quantifiers are dropped from the prefix, is true.

Definition 2. A dependency quantified Boolean formula is true if and only if it
has a satisfiability model.

The notion of satisfiability models has been originally introduced in [12] for
QBF formulas. For QBF s, the last definition is actually a theorem, because
their semantics is usually defined inductively without referring to model func-
tions, which is not possible for DQBF s. In fact, the NEXPTIME-completeness
of DQBF suggests that solving a DQBF formula involves finding and storing
those functions. Fortunately, we will soon see that this is not a problem in the
DQHORN case.

3 Satisfiability Models for DQHORN Formulas

We are not only interested in the mere existence of satisfiability models, but we
also want to characterize their structure for certain classes of formulas. In this
section, we will see that DQHORN formulas have satisfiability models of a very
simple structure.

We begin with an observation: it is a well known fact about propositional
Horn formulas, proved by Alfred Horn himself [10], that the intersection of two
satisfying truth assignments is a satisfying truth assignment, too. If we repre-
sent truth assignments by sets which collect the variables that are assigned the
value 1, the intersection of these assignments is given by the intersection of the
corresponding sets of variables.

Now assume that a quantified Horn formula with two universal variables xi
and xj is known to be satisfiable when xi = 0 and xj = 1 or when xi = 1
and xj = 0. That means there exist two truth assignments t1 and t2 to the
existential variables such that the formula is satisfied in both cases. If we could
lift the closure under intersection to the quantified case, it would mean that
the intersection of t1 and t2 would satisfy the formula when both xi and xj are
zero. This would imply that the satisfiability of a quantified Horn formula is
determined only by those cases where at most one of the universal variables is
zero.

Unfortunately, we have to obey the quantifier dependencies when choosing
truth values for the existential variables, so we cannot simply intersect t1 and t2.
Thus, lifting this result is obviously not so straightforward for the QHORN case,
and even less straightforward for DQHORN with its sophisticated dependencies.
What we need here is a way to characterize the behavior of the existentially
quantified variables. As it turns out, satisfiability models are a suitable formal-
ism for this and allow us to present a model-based proof which even works for
DQHORN.

Since the number of zeros being assigned to the universal variables is an im-
portant criterion for our investigations, we first introduce some useful notation.



Definition 3. By Bi
n, we denote the bit vector of length n where only the i-th

element is zero, i.e. Bi
n := (b1, ..., bn) with bi = 0 and bj = 1 for j 6= i.

Moreover, we define the following relations on n-tuples of truth values:

1. Z≤1(n) =
⋃
i

{
Bi

n

}
∪ {(1, ..., 1)} (at most one zero)

2. Z=1(n) =
⋃
i

{
Bi

n

}
(exactly one zero)

3. Z≥1(n) = {(a1, ..., an) | ∃i : ai = 0} (at least one zero)

For example, if n = 3, we have the following relations:

Z≤1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
Z=1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
Z≥1(3) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}

We omit the parameter n and simply write Z≤1 (or Z=1 resp. Z≥1) when
it is clear from the context. Usually, n equals the total number of the universal
quantifiers in a given formula.

Let Φ = Qφ(x,y) ∈ DQBF . The definition of a satisfiability model in Sec-
tion 2 requires that substituting the existentials y in Φ produces a formula
Φ[y/M ] which is true. That means the matrix φ[y/M ] must be true for all pos-
sible assignments to the universals x. But as motivated before, we want to focus
only on the cases where at most one of the universals is assigned zero. Accord-
ingly, we now introduce a special kind of satisfiability model which weakens the
condition that all possible assignments are considered: a so-called R∀-partial sat-
isfiability model is only required to satisfy φ[y/M ] for certain truth assignments
to the universal variables which are given by a relation R∀.

Definition 4. For a formula Φ = Qφ(x,y) ∈ DQBF with universal variables
x = (x1, ..., xn) and existential variables y = (y1, ..., ym), let M = (fy1

, ..., fym
)

be a mapping which maps each existential variable yi to a propositional formula
fyi over the universal variables xdi,1 , ..., xdi,ni

on which yi depends. Furthermore,
let R∀(n) be a relation on the set of possible truth assignments to n universals.
Then M is a R∀-partial satisfiability model for Φ if the formula φ[y/M ] is
true for all x ∈ R∀(n).

Consider the following example:

Φ = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3) (x1 ∨ y1) ∧ (x2 ∨ ¬y1) ∧ (¬x2 ∨ x3 ∨ ¬y2)

Then Φ does not have a satisfiability model, butM = (fy1
, fy2

) with fy1
(x1, x2) =

¬x1 ∨ x2 and fy2(x2, x3) = 0 is a Z≤1-partial satisfiability model for Φ, because
φ[y/M ] = (x1 ∨ ¬x1 ∨ x2) ∧ (x2 ∨ (x1 ∧ ¬x2)) ∧ (¬x2 ∨ x3 ∨ 1) ≈ x2 ∨ x1, which
is true for all x = (x1, x2, x3) with x ∈ Z≤1.

It is not surprising that the mere existence of a Z≤1-partial satisfiability
model does not imply the existence of a (total) satisfiability model - at least
not in the general case. But as discussed before, we are going to prove that
for DQHORN formulas, the behavior of the formula for x ∈ Z≤1 does indeed



completely determine its satisfiability. Accordingly, we now show: if we can find
a Z≤1-partial satisfiability model M to satisfy a DQHORN formula whenever
at most one of the universals is false, then we can also satisfy the formula for
arbitrary truth assignments to the universals. We achieve this by using M to
construct a (total) satisfiability model M t.

Definition 5. Let Φ = Qφ(x,y) ∈ DQHORN with universal variables x =
(x1, ..., xn) and existential variables y = (y1, ..., ym), and let M = (fy1

, .., fym
)

be a Z≤1-partial satisfiability model for Φ. For each fyi
(xdi,1

, ..., xdi,ni
) in M , we

define f tyi
as follows:

f tyi
(xdi,1

, ..., xdi,ni
) := (¬xdi,1

→ fyi
(0, 1, 1, ..., 1))

∧ (¬xdi,2 → fyi(1, 0, 1, ..., 1))
∧ ...
∧ (¬xdi,ni

→ fyi
(1, 1, ..., 1, 0))

∧ fyi
(1, ..., 1)

Then we call M t = (f ty1
, ..., f tym

) the total completion of M .

The intuition behind this definition is the following: for each argument which
is zero, we consider the value of the original function when only this argu-
ment is zero. Then we return the conjunction (the intersection) of those orig-
inal function values. Additionally, we have to intersect with fyi

(1, ..., 1). For
example, f tyi

(1, 0, 0, 1) = fyi
(1, 0, 1, 1) ∧ fyi

(1, 1, 0, 1) ∧ fyi
(1, 1, 1, 1). In case all

the arguments are 1, we simply return the value of the original function, i.e.
f tyi

(1, .., 1) = fyi(1, .., 1).
At the beginning of this section, we have mentioned that for propositional

Horn formulas, the intersection of satisfying truth assignments is again a satis-
fying truth assignment. If you compare this to the previous definition (together
with the following theorem), you will notice that we have just presented the
generalized DQHORN version of it. The most important difference is that we
now always intersect with fyi(1, ..., 1). This takes care of the cases where certain
universal variables are zero, but yi does not depend on them due to the imposed
quantifier dependencies.

Theorem 1. Let Φ = Qφ(x,y) ∈ DQHORN be a dependency quantified Horn
formula with a Z≤1-partial satisfiability model M = (fy1

, .., fym
). Then the total

completion of M , i.e. M t = (f ty1
, ..., f tym

) as defined above, is a satisfiability
model for Φ.

Proof. We must show that φ[y/M t] is true for all truth assignments t(x) :=
(t(x1), ..., t(xn)) ∈ {0, 1}n to the universal variables.
Since f tyj

(1, ..., 1) = fyj (1, ..., 1), we only need to consider t(x) ∈ Z≥1.
The proof is by induction on the number of zeros in t(x). The induction base

is the case t(x) ∈ Z=1. Then the definition of M t implies that

f tyj
(t(xdj,1), ..., t(xdj,nj

)) = fyj (t(xdj,1), ..., t(xdj,nj
)) ∧ fyj (1, ..., 1) = 1



for all yj . Now let t(x) = Bi
n be an assignment to the universals where t(xi) = 0.

In order to prove that every clause in φ[y/M t] is true for t(x), we make a case
distinction on the structure of Horn clauses. Any clause C belongs to one of the
following cases:

1. C contains a positive existential variable yj :
Consider a clause of the form C = yj ∨

∨
l∈Ly
¬yl ∨

∨
l∈Lx

¬xl. We assume
that i 6∈ Lx, because C[y/M t] is trivially true for t(x) if i ∈ Lx.
If fyj (t(xdj,1), ..., t(xdj,nj

)) = fyj (1, ..., 1) = 1 then f tyj
(t(xdj,1), ..., t(xdj,nj

)) =

1. Otherwise, without loss of generality, let fyj
(t(xdj,1

), ..., t(xdj,nj
)) = 0.

Then fyr (t(xdr,1), ..., t(xdr,nr
)) = 0 for some r ∈ Ly, as M is a Z≤1-partial

satisfiability model. This implies f tyr
(t(xdr,1

), ..., t(xdr,nr
)) = 0, which makes

C[y/M t] true.
2. C contains a positive universal variable xj :

Consider a clause of the form C = xj ∨
∨

l∈Lx
¬xl ∨

∨
l∈Ly
¬yl. The only

interesting case to discuss is i = j. As above, M being a Z≤1-partial satis-
fiability model implies that fyr

(t(xdr,1
), ..., t(xdr,nr

)) = 0 for some r ∈ Ly.
And this implies f tyr

(t(xdr,1), ..., t(xdr,nr
)) = 0.

3. no positive literal in C:
Consider a clause of the form C =

∨
l∈Lx

¬xl ∨
∨

l∈Ly
¬yl. We only need

to discuss the case that i 6∈ Lx. Again, M being a Z≤1-partial satisfiability
model implies that we have fyr

(t(xdr,1
), ..., t(xdr,nr

)) = 0 for some r ∈ Ly.
This means f tyr

(t(xdr,1
), ..., t(xdr,nr

)) = 0.

For the induction step, we consider an assignment where k > 1 universals are
false. Let t(xi1) = 0, ..., t(xik) = 0 and t(xs) = 1 for s 6= i1, ..., ik. In order
to show that φ[y/M t] is true for t(x), we can use the induction hypothesis
and assume that φ[y/M t] is true for t1(x) = Bik

n as well as for tk−1(x) with
tk−1(x1) = 0, ..., tk−1(xik−1

) = 0 and tk−1(xs) = 1 for s 6= i1, ..., ik−1. That
means, the case with k zeros xi1 ,..., xik is reduced to the case where only xik is
zero and the case where xi1 , ..., xik−1

are zero. Then the definition of f tyj
implies

f t
yj (t(xdj,1), ..., t(xdj,nj

)) = f t
yj (t1(xdj,1), ..., t1(xdj,nj

))∧f t
yj (tk−1(xdj,1), ..., tk−1(xdj,nj

))

Again, we make a case distinction. It is actually very similar to the one from
the induction base:

1. C contains a positive existential variable yj :
Consider a clause of the form C = yj ∨

∨
l∈Ly
¬yl ∨

∨
l∈Lx

¬xl. We assume
that i1, ..., ik 6∈ Lx, because otherwise, C[y/M t] is trivially true for t(x).
If f tyj

(t1(xdj,1
), ..., t1(xdj,nj

)) = 1 and f tyj
(tk−1(xdj,1

), ..., tk−1(xdj,nj
)) = 1,

we have f tyj
(t(xdj,1), ..., t(xdj,nj

)) = 1.
Otherwise, without loss of generality, let f tyj

(t1(xdj,1
), ..., t1(xdj,nj

)) = 0.
Then the induction hypothesis implies that f tyr

(t1(xdr,1
), ..., t1(xdr,nr

)) = 0
for some r ∈ Ly, and we get f tyr

(t(xdr,1), ..., t(xdr,nr
)) = 0.



2. C contains a positive universal variable xj :
Consider a clause of the form C = xj ∨

∨
l∈Lx

¬xl ∨
∨

l∈Ly
¬yl. The only

interesting case to discuss is j ∈ {i1, ..., ik}. Without loss of generality, we
assume j = ik.
It follows from the induction hypothesis that f tyr

(t1(xdr,1), ..., t1(xdr,nr
)) = 0

for some r ∈ Ly. Then f tyr
(t(xdr,1

), ..., t(xdr,nr
)) = 0.

3. no positive literal in C:
Consider a clause of the form C =

∨
l∈Lx

¬xl ∨
∨

l∈Ly
¬yl. We only need

to discuss the case that i1, ..., ik 6∈ Lx. Again, the induction hypothesis im-
plies that we have f tyr

(t1(xdr,1
), ..., t1(xdr,nr

)) = 0 for some r ∈ Ly. Then
f tyr

(t(xdr,1), ..., t(xdr,nr
)) = 0.

ut

4 From DQBF∗ to QBF ∗: Eliminating Universals

4.1 The General Case

Quantifier expansion is a well-known technique for solving QBF s [1, 3]. As
demonstrated in this section, it can be generalized to dependency quantified
formulas and may be used to compute for any DQBF∗ formula an equivalent
prenex QBF∗ formula.

A universal quantifier ∀x φ(x) is just an abbreviation for φ(0) ∧ φ(1), so we
can expand it and make two copies of the original matrix, one for the universally
quantified variable being false, and one for that variable being true. As explained
in [3], existential variables which depend on that universal variable need to be
duplicated as well. For example, in

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2)

the choice for y1 depends on the value of x1. We must therefore introduce two
separate instances y1,(0) and y1,(1) of the original variable y1, where y1,(0) is used
in the copy of the matrix for x1 = 0, and analogously y1,(1) for x1 = 1. We
obtain the expanded formula

∀x2∀x3∃y1,(0)(x2)∃y1,(1)(x2)∃y2(x2, x3)φ(0, x2, x3, y1,(0), y2) ∧ φ(1, x2, x3, y1,(1), y2)

We can do this successively to expand multiple universal quantifiers. Unlike
the QBF∗ case described in [3] and [4], we do not need to start with the innermost
quantifier, because DQBF∗ formulas can always be written with a ∀∗∃∗ prefix
where the order of the universals is irrelevant. After expanding all universal
quantifiers, we are left with a QBF∗ formula - actually a very special one with
a ∃∗ prefix. Obviously, this expansion leads to an exponential blowup of the
original formula. In practice, we do not need to expand all universals. For our
sample formula, the expansion of x1 is sufficient, because the resulting formula
can be written in QBF∗ as

∀x2∃y1,(0)∃y1,(1)∀x3∃y2 φ(0, x2, x3, y1,(0), y2) ∧ φ(1, x2, x3, y1,(1), y2)



One could think of sophisticated strategies for selecting which universals must be
expanded for a given DQBF∗ formula. In the general case, however, this cannot
avoid exponential growth, therefore the following discussion will assume that all
universal quantifiers are eliminated. Using the results from the previous section,
we will show that this is not a problem for DQHORN∗ formulas, because the
expanded formula is always small, even if all universals are expanded.

In the general case, for a DQBF ∗ formula

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ..., xd1,n1
)...∃ym(xdm,1 , ..., xdm,nm

)φ(x,y, z)

with universal variables x = x1, ..., xn, existential variables y = y1, ..., ym and
free variables z, we obtain the expanded QBF∗ formula

Φ∃QBF (z) := ∃y1,(0,...,0)∃y1,(0,...,0,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,...,0)∃ym,(0,...,0,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)∧
t(x)∈{0,1}n

φ(t(x), y1,(t(xd1,1
),...,t(xd1,n1

)), ..., ym,(t(xdm,1
),...,t(xdm,nm

)), z)

We omit the formal proof that Φ(z) ≈ Φ∃QBF (z), as it is quite obvious that
Φ∃QBF is simply the formalization of the elimination algorithm we have just
described.

Here is an example: the formula

Φ(z) = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2, z)

from above is expanded to

Φ∃QBF (z) = ∃y1,(0,0)∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,0)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)
φ(0, 0, 0, y1,(0,0), y2,(0,0), z) ∧ φ(0, 0, 1, y1,(0,0), y2,(0,1), z)

∧ φ(0, 1, 0, y1,(0,1), y2,(1,0), z) ∧ φ(0, 1, 1, y1,(0,1), y2,(1,1), z)
∧ φ(1, 0, 0, y1,(1,0), y2,(0,0), z) ∧ φ(1, 0, 1, y1,(1,0), y2,(0,1), z)
∧ φ(1, 1, 0, y1,(1,1), y2,(1,0), z) ∧ φ(1, 1, 1, y1,(1,1), y2,(1,1), z)

4.2 Special Case: DQHORN ∗

We will now show that the expansion of universal quantifiers is feasible for
DQHORN ∗ formulas.

Definition 6. Let Φ ∈ DQHORN∗ with

Φ(z) = ∀x1...∀xn∃y1(xd1,1
, ..., xd1,n1

)...∃ym(xdm,1
, ..., xdm,nm

)φ(x,y, z)

be a dependency quantified Horn formula with universal variables x = x1, ..., xn,
existential variables y = y1, ..., ym and free variables z.



Then we define the formula Φ∃HORN (z) as

Φ∃HORN (z) := ∃y1,(0,1,...,1)∃y1,(1,0,1,...,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,1,...,1)∃ym,(1,0,1,...,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)∧
t(x)∈Z≤1(n)

φ(t(x), y1,(t(xd1,1
),...,t(xd1,n1

)), ..., ym,(t(xdm,1
),...,t(xdm,nm

)), z)

The only difference between the formula Φ∃HORN and the expansion Φ∃QBF

for general DQBF∗ formulas is that for Horn formulas, not all possible truth
assignments to the universally quantified variables have to be considered. Based
on the results from Section 3, assignments where more than one universal variable
is false are irrelevant for DQHORN∗ formulas.

For the formula

Φ(z) = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2, z)

from the example in Section 4.1, we have

Φ∃HORN (z) = ∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)
φ(0, 1, 1, y1,(0,1), y2,(1,1), z) ∧ φ(1, 0, 1, y1,(1,0), y2,(0,1), z)

∧ φ(1, 1, 0, y1,(1,1), y2,(1,0), z) ∧ φ(1, 1, 1, y1,(1,1), y2,(1,1), z)

Before we can prove that Φ∃HORN is indeed equivalent to Φ, we make a
fundamental observation: for the special case that Φ is closed, i.e. there are no
free variables, the satisfiability of Φ∃HORN implies the existence of a Z≤1-partial
satisfiability model for Φ.

Lemma 1. Let Φ ∈ DQHORN be a dependency quantified Horn formula with-
out free variables, and let Φ∃HORN be defined as above. If Φ∃HORN is satisfiable
then Φ has a Z≤1-partial satisfiability model.

Proof. Let t be a satisfying truth assignment to the existentials in Φ∃HORN . This
assignment t provides us with all the information needed to construct a Z≤1-
partial satisfiability model for Φ. The idea is to assemble the truth assignments to
the individual copies yi,(xdi,1

,...,xdi,ni
) of an existential variable yi into a common

model function. We achieve this with the following definition:

fyi(xdi,1 , ..., xdi,ni
) = (x̄di,1 ∧ xdi,2 ∧ ... ∧ xdi,ni

→ t(yi,(0,1,...,1)))

∧ (xdi,1
∧ x̄di,2

∧ xdi,3
∧ ... ∧ xdi,ni

→ t(yi,(1,0,1,...,1)))

∧ ...
∧ (xdi,1 ∧ ... ∧ xdi,ni−1 ∧ x̄di,ni

→ t(yi,(1,...,1,0)))

∧ (xdi,1
∧ ... ∧ xdi,ni

→ t(yi,(1,...,1)))

Now, the fyi
form a Z≤1-partial satisfiability model for Φ, because for all x =

(x1, ..., xn) with x ∈ Z≤1, we have fyi
(xdi,1

, ..., xdi,ni
) = t(yi,(xdi,1

,...,xdi,ni
)),

and φ(x1, ..., xn, t(y1,(xd1,1
,...,xd1,n1

)), ..., t(ym,(xdm,1
,...,xdm,nm

))) = 1 due to the
satisfiability of Φ∃HORN . ut



Using Lemma 1 in combination with Theorem 1, it is now easy to show that
Φ∃HORN is equivalent to Φ.

Theorem 2. For Φ ∈ DQHORN∗ and Φ∃HORN as defined above, it holds that
Φ ≈ Φ∃HORN .

Proof. The implication Φ(z) |= Φ∃HORN (z) is obvious, as the clauses in Φ∃HORN

are just a subset of the clauses in Φ∃QBF , which in turn is equivalent to Φ.
The implication Φ∃HORN (z) |= Φ(z) is more interesting. Assume Φ∃HORN (z∗)
is satisfiable for some fixed z∗. With the free variables fixed, we can treat both
Φ∃HORN (z∗) and Φ(z∗) as closed formulas and apply Lemma 1 and the results
from Section 3 as follows:
According to Lemma 1, the satisfiability of Φ∃HORN (z∗) implies that Φ(z∗) has
a Z≤1-partial satisfiability model. On this partial model, we can apply the to-
tal expansion from Definition 5 and Theorem 1 to obtain a (total) satisfiability
model. The fact that Φ(z∗) has a satisfiability model implies that Φ(z∗) is satis-
fiable. ut

We immediately obtain the following corollary:

Corollary 1. For any dependency quantified Horn formula Φ ∈ DQHORN∗

with free variables, there exists an equivalent formula Φ∃HORN ∈ QHORN∗

without universal quantifiers. The length of Φ∃HORN is bounded by |∀|·|Φ|, where
|∀| is the number of universal quantifiers in Φ, and |Φ| is the length of Φ.

5 Solving DQHORN ∗-SAT

We can take advantage of the fact that the transformation we have just pre-
sented produces QHORN ∗ formulas without universal variables. The absence of
universals allows us to easily determine their satisfiability, because a formula of
the form Ψ(z) = ∃y1...∃ym ψ(y1, ..., ym, z) is satisfiable if and only if its matrix
ψ(y1, ..., ym, z) is satisfiable. The latter is a purely propositional formula, so we
can apply existing SAT solvers for propositional Horn.

We then obtain the following algorithm for determining the satisfiability of
a formula Φ ∈ DQHORN∗:

1. Transform Φ into Φ∃HORN according to Definition 6. This requires time
O(|∀| · |Φ|) and produces a formula of length |Φ∃HORN | = O(|∀| · |Φ|).

2. Determine the satisfiability of φ∃HORN , which is the purely propositional
matrix of Φ∃HORN . It is well known [6] that SAT for propositional Horn
formulas can be solved in linear time, in this case O(|φ∃HORN |) = O(|∀|·|Φ|).

In total, this requires timeO(|∀|·|Φ|), which is just as hard asQHORN ∗-SAT [11].



6 Conclusion

We have introduced the class of dependency quantified Horn formulasDQHORN ∗
and have shown that it is a tractable subclass of DQBF ∗. We have demonstrated
that the tractability of DQHORN ∗ is due to an interesting effect that the Horn
property has on the behavior of the quantifiers, a phenomenon which is preserved
when adding partially ordered quantifiers. Based on this result, we have been
able to prove that

– any dependency quantified Horn formula Φ ∈ DQHORN∗ of length |Φ| with
free variables, |∀| universal quantifiers and an arbitrary number of existential
quantifiers can be transformed into an equivalent quantified Horn formula
of length O(|∀| · |Φ|) which contains only existential quantifiers.

– DQHORN∗-SAT can be solved in time O(|∀| · |Φ|).

This shows that the class DQHORN ∗ is no more difficult than QHORN ∗, but
apparently does not provide significant increases in expressive power either.
DQHORN ∗should, however, not be considered as an isolated subclass of DQBF ∗.
Just like ordinary QHORN∗ formulas are important as subproblems when solv-
ing arbitrary QBF∗ formulas [5], our findings on DQHORN∗ should prove useful
for handling more general classes of DQBF ∗ formulas. And since the latest trend
of enabling QBF solvers to directly handle non-prenex formulas [8] constitutes
a special case of partially-ordered quantification with tree-like dependencies,
our results might also be applied in non-prenex QBF solvers for cutting Horn
branches.

In addition, the tractability of DQHORN ∗ shows that adding partially or-
dered quantifiers does not necessarily lead to a computational blow-up as in the
general case with DQBF ∗. Further research should therefore explore the com-
plexity and expressiveness of other subclasses and special cases, in particular
tree-like dependencies as mentioned above.
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