

Dependency Quantified Boolean Formulas

Uwe Bubeck

Universität Paderborn

17.01.2013

Outline

- Introduction
- Models
- Dependency Quantification
- DQBF Subclasses
- Conclusion

Introduction

Quantified Boolean Formulas 1/2

QBF extends propositional logic by allowing universal and existential quantifiers over propositional variables.

Inductive definition:

- 1. Every propositional formula is a QBF.
- 2. If Φ is a QBF then $\forall x \Phi$ and $\exists y \Phi$ are also QBFs.
- 3. If Φ_1 and Φ_2 are QBFs then $\neg \Phi_1$, $\Phi_1 \land \Phi_2$ and $\Phi_1 \lor \Phi_2$ are also QBFs.

Quantified Boolean Formulas 2/2

In a closed QBF, every variable is quantified.

Semantics definition for closed QBF:

 $\exists y \Phi(y)$ is true if and only if $\Phi[y/0]$ is true or $\Phi[y/1]$ is true.

 $\forall x \ \Phi(x)$ is true if and only if $\Phi[x/0]$ is true and $\Phi[x/1]$ is true.

Bounded Reachability 1/4

Application: Bounded Reachability / S-T-Connectivity

Given a directed graph G = (V, E), start nodes $S \subseteq V$, terminal nodes $T \subseteq V$ and bound $k \ge 0$, is there a path of

length at most 2^k from some $s \in S$ to some $t \in T$?

Bounded Reachability 2/4

In Bounded Model Checking, vertices are typically binary vectors ($V = \{0,1\}^n$), and the edges are given by a transition relation δ :

 $\delta(\boldsymbol{u}, \boldsymbol{v}) = 1$ iff there is an edge from $\boldsymbol{u} = (u_1, \dots, u_n)$ to $\boldsymbol{v} = (v_1, \dots, v_n)$.

If δ is encoded as a propositional formula, the whole reachability test can be formulated in propositional logic:

$$S(\boldsymbol{v}_0) \wedge T(\boldsymbol{v}_{2^k}) \bigwedge_{i=0}^{2^k-1} \delta(\boldsymbol{v}_i, \boldsymbol{v}_{i+1})$$

Bounded Reachability 3/4

$$S(\boldsymbol{v}_0) \wedge T(\boldsymbol{v}_{2^k}) \bigwedge_{i=0}^{2^k-1} \delta(\boldsymbol{v}_i, \boldsymbol{v}_{i+1})$$

Problem: many copies of δ

Compress conjunctions of renamings / instantiations by universal variables:

$$S(\boldsymbol{v}_0) \wedge T(\boldsymbol{v}_{2^k}) \wedge \forall \boldsymbol{u} \forall \boldsymbol{w} \left(\left(\bigvee_{i=0}^{2^k - 1} \left((\boldsymbol{u} = \boldsymbol{v}_i) \wedge (\boldsymbol{w} = \boldsymbol{v}_{i+1}) \right) \right) \rightarrow \delta(\boldsymbol{u}, \boldsymbol{w}) \right)$$

[Dershowitz et al., 2005], [Meyer/Stockmeyer, 1973]

Bounded Reachability 4/4

Even more compact: iterative squaring

$$\begin{split} \delta_{2^{k}}(\boldsymbol{a},\boldsymbol{b}) &\coloneqq \exists \boldsymbol{z} \, \delta_{2^{k-1}}(\boldsymbol{a},\boldsymbol{z}) \wedge \delta_{2^{k-1}}(\boldsymbol{z},\boldsymbol{b}) \\ &\vdots \\ \delta_{1}(\boldsymbol{a},\boldsymbol{b}) &\coloneqq \delta(\boldsymbol{a},\boldsymbol{b}) \end{split}$$

Even more compact: iterative squaring

$$\delta_{2^{k}}(\boldsymbol{a},\boldsymbol{b}) \coloneqq \exists \boldsymbol{z} \forall \boldsymbol{u} \forall \boldsymbol{w} \left(\left((\boldsymbol{u} = \boldsymbol{a}) \land (\boldsymbol{w} = \boldsymbol{z}) \right) \lor \left((\boldsymbol{u} = \boldsymbol{z}) \land (\boldsymbol{w} = \boldsymbol{b}) \right) \right) \rightarrow \delta_{2^{k-1}}(\boldsymbol{u},\boldsymbol{w})$$

By the existential quantifier, the choice of the middle point becomes local to each piece.

[Meyer/Stockmeyer, 1973]

Models

Function Models 1/2

We can describe the choices for y_1 and y_2 by Skolem or model functions $f_{y_1}(x_1) = x_1$ and $f_{y_2}(x_1, x_2) = x_1 \vee x_2$.

Theorem

A closed prenex QBF Φ with existential variables y_1, \dots, y_m is true iff there exist f_{y_1}, \dots, f_{y_m} such that:

- 1. Each f_{y_i} is a propositional formula over universal variables which are quantified further outside than y_i .
- 2. Simultaneous replacement $\Phi[y_1/f_{y_1}, ..., y_m/f_{y_m}]$ of all variable occurrences with corresponding functions produces a true formula.

Dependency Quantification

Motivation: overcome the tight correspondence between prefix order and arguments of the model functions.

Prenex QBF: $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \forall x_3 \exists y_3 \phi$ with model functions $f_{y_1}(x_1), f_{y_2}(x_1, x_2), f_{y_3}(x_1, x_2, x_3)$ and $\{x_1\} \subseteq \{x_1, x_2\} \subseteq \{x_1, x_2, x_3\}.$

Now DQBF: $\forall x_1 \forall x_2 \exists y_1(x_1) \exists y_2(x_2) \exists y_3(x_1, x_2) \phi$ with model functions $f_{y_1}(x_1), f_{y_2}(x_2), f_{y_3}(x_1, x_2)$ and $\{x_1\} \not\subseteq \{x_2\}.$

Dependency Quantification 2/3

A (closed) DQBF is a formula of the form

$$\Phi = \forall x_1 \dots \forall x_n \exists y_1(x_{d_{1,1}}, \dots, x_{d_{1,n_1}}) \dots \exists y_m(x_{d_{m,1}}, \dots, x_{d_{m,n_m}}) \phi$$

where $\{d_{i,1}, \dots, d_{i,n_i}\} \subseteq \{1, \dots, n\}$ are the dependencies of y_i ,
and ϕ is a propositional matrix over $x_1, \dots, x_n, y_1, \dots, y_m$.

Semantics Definition

 Φ is true if and only if there exist f_{y_1}, \dots, f_{y_m} such that:

1. Each f_{y_i} is a propositional formula over $x_{d_{i,1}}, \dots, x_{d_{i,n_i}}$.

2.
$$\Phi[y_1/f_{y_1}, ..., y_m/f_{y_m}]$$
 is true.

Dependency Quantification 3/3

Generalization to DQBF with free variables [Bubeck, 2010] A DQBF with free variables z_1, \dots, z_r is a formula

 $\Phi = \forall x_1 \dots \forall x_n \exists y_1(x_{d_{1,1}}, \dots, x_{d_{1,n_1}}) \dots \exists y_m(x_{d_{m,1}}, \dots, x_{d_{m,n_m}}) \phi$ where $\{d_{i,1}, \dots, d_{i,n_i}\} \subseteq \{1, \dots, n\}$, and ϕ is a propositional matrix over $x_1, \dots, x_n, y_1, \dots, y_m$ and z_1, \dots, z_r .

Semantics Definition

 $\Phi \in \text{DQBF}$ with free variables z_1, \dots, z_r is satisfiable iff there exists a truth assignment $(\tau(z_1), \dots, \tau(z_r)) \in \{0,1\}^r$ such that $\Phi[z_1/\tau(z_1), \dots, z_r/\tau(z_r)]$ is true.

The semantics of QBF is defined inductively as in the tree models. For DQBF, direct recursive evaluation without storing (parts of) model functions seems not possible.

Workaround [Fröhlich et al., 2012]

Whenever choosing $\exists y_i(x_{d_{i,1}}, \dots, x_{d_{i,n_i}})$ in DPLL style, add

a Skolem clause $(l(x_{d_{i,1}}) \land \dots \land l(x_{d_{i,n_i}})) \rightarrow l(y_i)$ where l(v) = v or $l(v) = \neg v$ according to the current assignment to v.

Theorem

The DQBF satisfiability problem is NEXPTIME-complete. [Peterson / Reif, 1979]

This even holds for relatively simple prefixes of the form $\forall u \forall v \exists y(u) \exists z(v)$

where u, v, y and z are (disjoint) tuples of variables.

Surprising at first, since we can have non-prenex QBF

$$(\forall u \exists y \phi(u, y)) \land (\forall v \exists z \psi(v, z))$$

$$\approx \forall u \forall v \exists y \exists z \left(\phi(u, y) \land \psi(v, z) \right)$$

Additional restriction of non-prenex QBF:

variables from disjoint quantifier scopes cannot occur in common subformulas:

$$(\forall u \exists y \phi(u, y)) \land (\forall v \exists z \psi(v, z) \land \tau(y, z))$$

not possible

Why combine "unrelated" variables in one subformula?

DQBF Encodings 2/6

Alternative modeling approach for bounded reachability:

Two-player game where

- universal player presents a step counter $c = (c_1, ..., c_k)$,
- existential player must find corresponding \boldsymbol{u} and \boldsymbol{v} so that $(\boldsymbol{c} = 0) \rightarrow S(\boldsymbol{u}), (\boldsymbol{c} = 2^k - 1) \rightarrow T(\boldsymbol{v})$ and $\delta(\boldsymbol{u}, \boldsymbol{v})$.

QBF formulation:

$$\forall \boldsymbol{c} \exists \boldsymbol{u} \exists \boldsymbol{v} \left((\boldsymbol{c} = 0) \rightarrow S(\boldsymbol{u}) \right) \land \left(\left(\boldsymbol{c} = 2^k - 1 \right) \rightarrow T(\boldsymbol{v}) \right) \land \delta(\boldsymbol{u}, \boldsymbol{v})$$

 \rightarrow Clearly flawed: does not enforce a continuous path.

DQBF Encodings 3/6

Use two existential players and two counters:

- If $c^{(2)} = c^{(1)}$, both existential players must behave identically.
- If $c^{(2)} = c^{(1)} + 1$, second player continues where first player stopped.

$$\forall \boldsymbol{c}^{(1)} \exists \boldsymbol{u}^{(1)} \exists \boldsymbol{v}^{(1)} \forall \boldsymbol{c}^{(2)} \exists \boldsymbol{u}^{(2)} \exists \boldsymbol{v}^{(2)} \\ \left((\boldsymbol{c}^{(2)} = \boldsymbol{c}^{(1)}) \rightarrow (\boldsymbol{u}^{(1)} = \boldsymbol{u}^{(2)}) \land (\boldsymbol{v}^{(1)} = \boldsymbol{v}^{(2)}) \right) \land \\ \left((\boldsymbol{c}^{(2)} = \boldsymbol{c}^{(1)} + 1) \rightarrow (\boldsymbol{v}^{(1)} = \boldsymbol{u}^{(2)}) \right) \land \\ \left((\boldsymbol{c}^{(1)} = 0) \rightarrow S(\boldsymbol{u}^{(1)}) \right) \land \left((\boldsymbol{c}^{(1)} = 2^k - 1) \rightarrow T(\boldsymbol{v}^{(1)}) \right) \land \delta(\boldsymbol{u}^{(1)}, \boldsymbol{v}^{(1)})$$

DQBF Encodings 4/6

$$\forall c^{(1)} \exists u^{(1)} \exists v^{(1)} \forall c^{(2)} \exists u^{(2)} \exists v^{(2)}$$

$$((c^{(2)} = c^{(1)}) \rightarrow (u^{(1)} = u^{(2)}) \land (v^{(1)} = v^{(2)})) \land$$

$$((c^{(2)} = c^{(1)} + 1) \rightarrow (v^{(1)} = u^{(2)})) \land$$

$$((c^{(1)} = 0) \rightarrow S(u^{(1)})) \land ((c^{(1)} = 2^k - 1) \rightarrow T(v^{(1)})) \land \delta(u^{(1)}, v^{(1)})$$
Since $u^{(2)}$ and $v^{(2)}$ also depend on $c^{(1)}$, second player can cheat by behaving differently:

$$c^{(1)} = \tau, c^{(2)} = \tau + 1$$
:
$$c^{(1)} = \tau + 1, c^{(2)} = \tau + 1$$
:
Player 1: $a \rightarrow b$
Player 2: $b \rightarrow c$
Player 2: $b \rightarrow c$
 $d \rightarrow e$

DQBF Encodings 5/6

Choice of $u^{(2)}$ and $v^{(2)}$ should only depend on $c^{(2)}$.

Solution: explicitly indicate dependencies in DQBF

$$\forall c^{(1)} \forall c^{(2)} \exists u^{(1)}(c^{(1)}) \exists v^{(1)}(c^{(1)}) \exists u^{(2)}(c^{(2)}) \exists v^{(2)}(c^{(2)}) ((c^{(2)} = c^{(1)}) \rightarrow (u^{(1)} = u^{(2)}) \land (v^{(1)} = v^{(2)})) \land ((c^{(2)} = c^{(1)} + 1) \rightarrow (v^{(1)} = u^{(2)})) \land ((c^{(1)} = 0) \rightarrow S(u^{(1)})) \land ((c^{(1)} = 2^k - 1) \rightarrow T(v^{(1)})) \land \delta(u^{(1)}, v^{(1)})$$

Comparison with QBF encodings:

DQBF needs only O(n) existential variables vs. $O(k \cdot n)$.

DQBF Encodings 6/6

- QBF: two-player game, 1 univ. vs 1 ex. player, PSPACE-complete
- DQBF: three-player game, 1 univ vs 2 ex. players, NEXPTIME-complete (→ MIP [Babai et al. 1991])

Dependencies make sure that the existential players do not communicate.

Allows encodings which reuse space.

Example: create unique existentials indexed by i $\forall i \forall i' \exists y(i) \exists y(i') ((i = i') \rightarrow (y = y')) \land ((i \neq i') \rightarrow (y \neq y'))$

DQBF Reasoning Techniques

Important techniques for QBF:

- Q-resolution
 open problem for DQBF
- Universal quantifier expansion $\forall x \exists y \Phi(x, y) \approx \exists y_0 \exists y_1 \Phi(0, y_0) \land \Phi(1, y_1)$

For QBF, expansion follows immediately from the inductive QBF semantics.

A generalization to the function semantics of DQBF can be proven.

DQBF Universal Expansion

Theorem [Bubeck, 2010]

$$\forall x_1 \dots \forall x_n \exists y_1(x_{d_1}) \dots \exists y_k(x_{d_k})$$

$$\exists y_{k+1}(x_{d_{k+1}}, x_n) \dots \exists y_m(x_{d_m}, x_n)$$

$$\phi(x_1, \dots, x_n, y_1, \dots, y_m, \mathbf{Z})$$

with $x_n \notin x_{d_i}$ for $i \le k$ is equivalent to

$$\begin{aligned} \forall x_1 \dots \forall x_{n-1} \forall x_n \exists y_1(x_{d_1}) \dots \exists y_k(x_{d_k}) \\ \exists y_{k+1,(0)}, y_{k+1,(1)}(x_{d_{k+1}}, x_n) \dots \exists y_{m,(0)}, y_{m,(1)}(x_{d_m}, x_n) \\ \phi(x_1, \dots, x_{n-1}, 0, y_1, \dots, y_k, y_{k+1,(0)}, \dots, y_{m,(0)}, z) \land \\ \phi(x_1, \dots, x_{n-1}, 1, y_1, \dots, y_k, y_{k+1,(1)}, \dots, y_{m,(1)}, z). \end{aligned}$$

DQBF Subclasses

Whole Matrix Restrictions 1/2

Known tractable subclasses:

- DQ2-CNF satisfiability is solvable in linear time by a modification of the Aspvall / Plass / Tarjan algorithm. [Bubeck / Kleine Büning, 2010]
- DQHORN satisfiability is solvable in quadratic time.
 [Bubeck / Kleine Büning, 2006]

Whole Matrix Restrictions 2/2

Modification of the Aspvall / Plass / Tarjan algorithm:

- Q2-CNF unsatisfiability criterion (2):
 a universal node over x is in the same strongly
 connected component as an existential node over y
 and ∃y precedes ∀x in the prefix.
- DQ2-CNF unsatisfiability criterion (2'):
 a universal node over x is in the same strongly
 connected component as an existential node over y
 and y does not depend on x.

Generalized HORN 1/3

For DQCNF formulas with free variables, we split each clause ϕ_i into a bound part $\phi_i^b(v_1, ..., v_n)$ and a free part $\phi_i^f(z_1, ..., z_r)$ (both may be empty):

 $\Phi(z_1,\ldots,z_r) = Q_1 v_1 \ldots Q_n v_n \wedge_i \left(\phi_i^b(v_1,\ldots,v_n) \vee \phi_i^f(z_1,\ldots,z_r)\right)$

Then DQHORN^b is the subclass of DQCNF formulas with free variables where

- $Q_1v_1 \dots Q_nv_n \wedge_i \phi_i^b(v_1, \dots, v_n)$ is a formula in DQHORN, and
- each $\phi_i^f(z_1, \dots, z_r)$ is an arbitrary clause over free variables.

Generalized HORN 2/3

- For every $\Phi \in DQHORN^{b}$ with $|\forall|$ universal quantifiers, there exists a logically equivalent $\exists HORN^{b}$ formula of quadratic length $O(|\forall| \cdot |\Phi|)$
- which can be computed also in time $O(|\forall| \cdot |\Phi|)$. [Bubeck, 2010]
- That means DQHORN^b satisfiability is NP-complete.
- Similarly, a transformation in time $O(|\forall|^2 \cdot |\Phi|)$ is possible from DQ2-CNF^b to \exists 2-CNF^b. [Bubeck / Kleine Büning, 2010]

Generalized HORN 3/3

Idea for the DQHORN^b to \exists HORN^b transformation: Model functions for closed DQHORN can be written as intersection of individual assignments for cases with <u>at most one</u> universal being zero.

$$\begin{array}{ll} f_{y_{i}}^{t}(x_{d_{i,1}},...,x_{d_{i,n_{i}}}) & := & (\neg x_{d_{i,1}} \rightarrow f_{y_{i}}(0,1,1,...,1)) \\ & \wedge & (\neg x_{d_{i,2}} \rightarrow f_{y_{i}}(1,0,1,...,1)) \\ & \wedge & \cdots \\ & \wedge & (\neg x_{d_{i,n_{i}}} \rightarrow f_{y_{i}}(1,1,...,1,0)) \end{array} \right) \begin{array}{l} \text{We only need} \\ \text{to know these} \\ \text{values} \\ & \rightarrow \text{ partial model} \end{array}$$

This allows a simultaneous expansion of all universals with at most one universal being zero in each copy.

Conclusion

Conclusion

- DQBF corresponds to three-player games with 1 universal versus 2 existential players.
 Dependencies make sure that the existential players do not communicate.
- DQBF allows encodings which can reuse space.
- Dependency quantification seems significantly less powerful under CNF matrices with further restrictions (HORN, 2-CNF),

even if the restrictions apply only to bound variables.

Open Questions

- Universal expansion can be generalized to DQBF.
 What about Q-resolution for DQBF?
- Are there other interesting DQBF subclasses?
- How to solve DQBF in practice?

The End