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Abstract. We extend quantified 2-CNF formulas by also allowing lit-
erals over free variables which are exempt from the 2-CNF restriction.
That means we consider quantified CNF formulas with clauses that con-
tain at most two bound literals and an arbitrary number of free literals.
We show that these Q2-CNFb formulas can be transformed in polyno-
mial time into purely existentially quantified CNF formulas in which the
bound literals are in 2-HORN (∃2-HORNb).
Our result still holds if we allow Henkin-style quantifiers with explicit de-
pendencies. In general, dependency quantified Boolean formulas (DQBF)
are assumed to be more succinct at the price of a higher complexity. This
paper shows that DQ2-CNFb has a similar expressive power and com-
plexity as ∃2-HORNb. In the special case that the 2-CNF restriction is
also applied to the free variables (DQ2-CNF∗), the satisfiability can be
decided in linear time.

1 Introduction

Quantified Boolean formulas (QBF) generalize propositional formulas by allow-
ing variables to be quantified universally or existentially. In this paper, we also
allow free variables which are not quantified and indicate this with a star (QBF∗).
An interesting property of quantified Boolean formulas with free variables is that
it is possible to define an equivalence between such formulas and propositional
formulas. We say that Φ ∈ QBF∗ is equivalent to ψ ∈ PROP (Φ ≈ ψ) if and
only if the free variables in Φ correspond to the propositional variables in ψ and
both formulas have the same truth value for each assignment to the free/propo-
sitional variables. This means that quantified variables inside of Φ are not taken
into consideration here, so these can be thought of as local or auxiliary variables.
An important application of auxiliary variables is to introduce abbreviations for
repeating parts in a given formula, such as multiple copies of transition or reach-
ability relations in verification problems [9, 14]. Accordingly, QBF∗ representa-
tions are often much more compact than equivalent propositional encodings,
in addition to the advantage that many problems have a natural forall-exists
semantics which can elegantly be modeled by quantifiers [20].

? Partially supported by the German Research Foundation (DFG), grant KL 529/QBF



Unfortunately, quantified Boolean formulas appear to be much harder to solve
than propositional formulas, with QBF and QBF∗ satisfiability being PSPACE-
complete. This makes it worthwhile to investigate subclasses with a lower deci-
sion complexity. An interesting idea is to consider QBF∗ formulas in clausal form
with additional restrictions only on the quantified literals. Let Φ = Q

∧
i(φ

b
i∨φ

f
i )

be a quantified Boolean formula with quantifiers Q, such that φbi is a clause over
bound variables (called bound part) and φfi a clause over free variables (the free
part). Then we require that Q

∧
i φ

b
i ∈ QK for a formula class QK, while the free

parts φfi may have arbitrary structure. Such formulas, which we call QKb for a
base class QK, can be surprisingly powerful.

For example, QHORNb denotes quantified Horn formulas in which the Horn
property is only enforced on the quantified variables, which means each clause
has at most one positive and arbitrarily many negative literals over quantified
variables, but an arbitrary number of free literals with arbitrary polarity. Obvi-
ously, every propositional CNF formula is also a QHORNb formula, but this class
is significantly more capable. For example, QHORNb formulas can compactly
encode Boolean circuits with arbitrary fan-out (and vice versa) [1, 15], while
it is generally assumed that there exist circuits with fan-out greater than 1 for
which every equivalent propositional formula is exponentially larger. Further-
more, while there are propositional formulas for which every equivalent CNF
formula is exponential, every propositional formula has a poly-size equivalent
QHORNb formula, e.g. by the one-sided Tseitin transformation [22, 19] when
the newly introduced variables are bound by existential quantifiers. In fact, such
poly-size CNF transformations can even be accomplished with ∃2-HORNb for-
mulas, that is, existentially quantified formulas in clausal form with at most two
bound literals per clause, one of which may be positive [8]. At the same time,
QHORNb satisfiability is not significantly more difficult than propositional sat-
isfiability, because the universal quantifiers can easily be eliminated [15], which
makes QHORNb satisfiability NP-complete.

Besides HORN, another standard restriction on the structure of clauses is
2-CNF. The goal of this paper is to investigate the implications of enforcing a
2-CNF restriction on the bound parts of QBF∗ formulas in clausal form. That
means we have clauses with at most two bound and arbitrarily many free liter-
als, called Q2-CNFb in line with the above terminology. This class is surprisingly
powerful and indeed exponentially more expressive than propositional CNF be-
cause of the above remark about ∃2-HORNb ⊆ Q2-CNFb formulas being suffi-
cient for poly-size CNF transformation.

Normally, 2-CNF formulas are not more difficult than HORN formulas. In
the propositional case, it is well known that the satisfiability problem for both
classes can be solved in linear time ([11, 2] and [13, 10]). For quantified 2-CNF
formulas with free variables, the satisfiability problem is still linear [2], whereas
the best known algorithms for determining the satisfiability of a quantified Horn
formula Φ with |∀| universal quantifiers require time O(|∀| · |Φ|) [12] (|Φ| is the
length of Φ, counting all occurrences of variables, including those in quantifier
definitions).
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Is it possible to make similar statements about the complexity and expressive
power of Q2-CNFb in comparison to QHORNb formulas? Our goal is to show
that Q2-CNFb formulas can be transformed in polynomial time into equivalent
∃2-HORNb formulas. This immediately implies that Q2-CNFb satisfiability is
NP-complete, like QHORNb satisfiability.

An intermediate result that we present is the elimination of all universal
quantifiers from a Q2-CNFb formula Φ in time and space O(|∀|2|Φ|). This might
be useful for QBF solvers, since a Q2-CNFb formula can be embedded as a sub-
formula in a QBF formula if we consider variables which are bound by preceding
quantifiers as free variables. For example, let Φ = Q((Q′ φ) ∧ ϕ) ≈ QQ′ (φ ∧ ϕ)
be a QBF formula in CNF where each clause in φ contains at most two literals
over variables that are bound in Q′, whereas the variables from Q can appear
without restrictions in φ and ϕ. Then the transformation presented below allows
the elimination of all universals in the Q2-CNFb formula Q′ φ.

2 Dependency Quantified Boolean Formulas

In QBF, an existentially quantified variable can have different values depend-
ing on the values of universal variables whose quantifiers occur further outside.
This imposes an ordering on the quantifiers where each existentially quanti-
fied variable depends on all preceding universal variables. Even if we waive
the usual requirement that all quantifiers have to appear at the beginning in
a dedicated quantifier prefix, it is not possible for two existential variables
which occur in common clauses to depend on disjoint non-empty sets of univer-
sally quantified variables. Dependency quantified Boolean formulas (DQBF or
DQBF∗ with free variables) [18] make this possible by explicitly stating for each
existentially quantified variable on which universals it depends. For example,
Φ = ∀x1∀x2∃y1(x1)∃y2(x2)∃y3(x1, x2) φ(x1, x2, y1, y2, y3) is a DQBF formula in
which y1 depends only on x1, y2 only on x2 and y3 on both x1 and x2.

Can we apply our poly-time transformation from Q2-CNFb to ∃2-CNFb also
to DQ2-CNFb formulas, which means formulas with dependency quantifiers as in
the example above and at most two bound literals per clause? The fact that uni-
versal variables can be eliminated cheaply from Q2-CNFb formulas implies that
2-CNF is such a strong restriction that the ordering of quantifiers in the prefix
loses much of its relevance. For DQHORNb, the situation is similar: it is indeed
possible to eliminate all dependency quantifiers with less than quadratic formula
growth [6] (that proof is for DQHORN∗, but it also applies to DQHORNb, since
it does not rely on a particular structure of the free variables).

In general, however, DQBF∗ encodings are assumed to be exponentially more
compact in the best case than QBF∗ encodings. Whereas QBF can be seen as
a two-player game with an existential player reacting to moves of a universal
player, DQBF corresponds to a three-player game where a universal player chal-
lenges two existential players with different inputs. Disjoint dependencies, like
for y1 and y2 in the example above, guarantee that both existential players work
independently. Such variables can still occur together in the same clauses, which
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is a vital feature that is not possible with QBF, even in non-prenex form. It
allows the universal player to compare the results of independent existential
players. This corresponds to a multi-prover interactive proof system [4], which
is a very powerful concept, but also causes another jump in complexity, with
DQBF∗ satisfiability being NEXPTIME-complete [18].

Before we can develop a transformation from DQ2-CNFb to ∃2-CNFb, we
need a few basics. We require DQBF∗ formulas to be in prenex form with a
quantifier-free matrix, as negations of existential dependency quantifiers would
be problematic. Because of the explicit dependencies, DQBF∗ formulas can al-
ways be written with a ∀∗∃∗ prefix. To quickly enumerate the dependencies of
a given existential variable yi, we use indices di,1, ..., di,ni which point to the
ni universals on which yi depends. For example, given the existential quan-
tifier ∃y4(x3, x5), we say that y4 depends on xd4,1 and xd4,2 with d4,1 = 3
and d4,2 = 5. We also use a shorter notation ∃yi(xdi) where we abbreviate
xdi := (xdi,1 , ..., xdi,ni ). It is allowed to have empty dependencies with ni = 0,
i.e. existential quantifiers ∃yi() that do not depend on any universals.

The semantics of DQBF and DQBF∗ is defined by associating dependency
quantified existentials ∃yi(xdi,1 , ..., xdi,ni ) with functions fyi(xdi,1 , ..., xdi,ni ):

Definition 1. (Satisfiability Model)
For Φ ∈ DQBF with existential variables y = (y1, ..., ym), let M = (fy1 , ..., fym)
map each existential yi to a propositional formula fyi over the universal vari-
ables xdi,1 , ..., xdi,ni on which yi depends.
M is a satisfiability model for Φ if and only if Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym ]
is true, i.e. if a tautological formula is obtained when simultaneously each exis-
tential variable yi is replaced with fyi and the existential quantifiers are dropped
from the prefix.

Definition 2. (DQBF and DQBF∗ Semantics)
A DQBF formula Φ is true if and only if it has a satisfiability model.
A DQBF∗ formula Ψ(z) with free variables z = (z1, ..., zr) is satisfiable if and
only if there exists a truth assignment τ(z) = (τ(z1), ..., τ(zr)) ∈ {0, 1}r to the
free variables such that Ψ(τ(z)) ∈ DQBF is true, i.e. replacing all occurrences
of free variables with their assigned truth value produces a true formula.

3 Transformation from DQ2-CNFb to ∃2-CNFb

There are two powerful concepts that we need for transforming DQ2-CNFb for-
mulas into ∃2-CNFb: universal expansion and minimal falsity/unsatisfiability.

Universal expansion in QBF∗ is the elimination of universal quantifiers by
the well-known equivalence ∀x Φ(x, z) ≈ Φ(0, z) ∧ Φ(1, z), an operation which
has been used successfully in various solvers, e.g. [3, 5, 7]. Care must be taken
to duplicate also subsequent existential quantifiers which are in the scope of the
expanded quantifier, in order to retain the ability to assign different values to
an existential for different values of a preceding universal. In general, repeated
application of this method obviously produces exponential formulas, even though
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the amount of duplication can often be significantly reduced in practice [5, 7,
17, 21]. We are going to show that the 2-CNF restriction on the bound variables
allows us to always apply universal expansion in a tractable fashion.

Universal expansion also works for DQBF∗, and the dependency lists imme-
diately indicate which existentials must be duplicated when a universal variable
is expanded. The correctness of universal expansion is bit more difficult to verify
for DQBF∗ because of the more implicit semantics definition by using model
functions.

Lemma 1. (Correctness of Universal Expansion for DQBF∗)
Let Φ be a DQBF∗ formula in which we want to expand the universal quantifier
∀xn. Without loss of generality, assume that the existentials are arranged in two
blocks, depending on whether they are dominated by xn or not:

Φ(z) = ∀x1...∀xn∃y1(xd1)...∃yk(xdk)∃yk+1(xdk+1
, xn)...∃ym(xdm , xn)

φ(x1, ..., xn, y1, ..., ym, z)

with xn 6∈ xdi for all 1 ≤ i ≤ m. Then Φ(z) ≈ Φ′(z) for the expanded formula

Φ′(z) = ∀x1...∀xn−1∃y1(xd1)...∃yk(xdk)

∃yk+1,(0), yk+1,(1)(xdk+1
)...∃ym,(0), ym,(1)(xdm)

φ(x1, ..., xn−1, 0, y1, ..., yk, yk+1,(0), ..., ym,(0), z)∧
φ(x1, ..., xn−1, 1, y1, ..., yk, yk+1,(1), ..., ym,(1), z) .

Proof. We must prove that Φ(τ(z)) = 1⇔ Φ′(τ(z)) = 1 for any truth assignment
τ(z) := (τ(z1), ..., τ(zr)) ∈ {0, 1}r to the free variables z = (z1, ..., zr). For fixed
τ(z), we can consider Φ(τ(z)) and Φ′(τ(z)) as closed DQBF formulas.

From left to right: letM = (fy1 , ..., fym) be a satisfiability model for Φ(τ(z)).
Define G(0) := (gy1 , ..., gyk , gyk+1,(0)

, ...., gym,(0)) with gyi := fyi for i = 1, ..., k
and gyi,(0)(xdi,1 , ..., xdi,ni ) := fyi(xdi,1 , ..., xdi,ni , 0) for i = k + 1, ...,m.
Then ∀x1...∀xn−1 φ(x1, ..., xn−1, 0, gy1 , ..., gym,(0) , τ(z)) = 1. With an analogous
definition of G(1) with functions gyi,(1)(xdi,1 , ..., xdi,ni ) := fyi(xdi,1 , ..., xdi,ni , 1)
for i = k + 1, ...,m, G = (gy1 , ..., gyk , gyk+1,(0)

, gyk+1,(1)
, ..., gym,(0) , gym,(1)) is a

satisfiability model for Φ′(τ(z)).
From right to left: let G = (gy1 , ..., gyk , gyk+1,(0)

, gyk+1,(1)
, ..., gym,(0) , gym,(1)) be

a satisfiability model for Φ′(τ(z)). We now construct a model M = (fy1 , ..., fym)
that satisfies Φ(τ(z)). Let fyi := gyi for i = 1, ..., k, and for i = k + 1, ...,m, let

fyi(xdi,1 , ..., xdi,ni , xn) := (xn ∨ gyi,(0)(xdi
) ∧ (¬xn ∨ gyi,(1)(xdi

))

such that fyi [xn/0] := fyi(xdi,1 , ..., xdi,ni , 0) ≈ gyi,(0)(xdi,1 , ..., xdi,ni ), and thus:

∀x1...∀xn−1 φ(x1, ..., xn−1, 0, fy1 , ..., fyk , fyk+1
[xn/0], ..., fym [xn/0], τ(z))

≈ ∀x1...∀xn−1 φ(x1, ..., xn−1, 0, gy1 , ..., gyk , gyk+1,(0)
, ..., gym,(0) , τ(z))

The latter is true, since G is a satisfiability model for Φ′(τ(z)). The case xn = 1
is analogous, so ∀x1...∀xn−1∀xn φ(x1, ..., xn−1, xn, fy1 , ..., fym , t(z)) = 1. ut
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The expressive power of DQBF∗ and QBF∗ formulas in clausal form depends
essentially on the structure of the minimal unsatisfiable subformulas of the bound
part of the matrix, so we first recall some well-known properties. A CNF formula
φ is called minimal unsatisfiable if and only if φ is unsatisfiable and the removal
of an arbitrary clause produces a satisfiable formula. A (dependency) quantified
Boolean formula Φ = Q

∧
1≤i≤q φi with CNF matrix and without free variables

is called minimal false if and only if Φ is false and removing an arbitrary clause
φi leads to a true formula. If Φ is purely existentially quantified, it is minimal
false if and only if the matrix is minimal unsatisfiable. A clause L ∨K is called
an ∃-unit clause for a formula Φ ∈ DQ2-CNF if and only if L is a literal over an
existentially quantified variable and either L = K orK is a universally quantified
literal.

A well-known fact about minimal unsatisfiable propositional 2-CNF formulas
is that they contain at most two unit clauses (see, e.g., [16]). This result can be
lifted to minimal false DQ2-CNF formulas:

Lemma 2. (Number of ∃-unit clauses)

1. A minimal unsatisfiable 2-CNF formula contains at most two unit clauses.
2. A minimal false DQ2-CNF formula contains at most two ∃-unit clauses.

Proof. Ad 1: Suppose there is some minimal unsatisfiable formula α with at least
three unit clauses, say L1, L2 and L3. Then there are clauses ¬L1 ∨ P j11 ,¬L2 ∨
P j22 ,¬L3 ∨ P j33 for 1 ≤ j1 ≤ t1, 1 ≤ j2 ≤ t2, 1 ≤ j3 ≤ t3. Please notice that
α contains no complementary unit clause ¬Li and no clauses Li ∨Ki for some
literal Ki. Furthermore, all the literals P 1

1 , ..., P
t3
3 must be distinct. Let α be

such a formula with a minimal number of variables.
After applying unit resolution on the Li and removing the parent clauses, we
obtain a minimal unsatisfiable formula with at least three unit clauses. These are
the clauses P 1

1 , ..., P
t3
3 . The variables of Li do not occur in the resulting formula,

which is a contradiction to our initial assumption that α has a minimal number
of variables.

Ad 2: Let Φ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ be a minimal false formula
in DQ2-CNF with at least three ∃-unit clauses. By expansion of the universal
variables, we obtain an existentially quantified formula ∃y′φ′ ∈ ∃2-CNF whose
matrix φ′ is unsatisfiable. A subset of the clauses in φ′ forms a minimal unsat-
isfiable formula φ′′. From the first part of the lemma, we know that φ′′ contains
at most two unit clauses, say L1 and L2. These literals are unit clauses in the
original formula or come from clauses U1 ∨ L1 or U2 ∨ L2 with universal literals
U1, U2. That means two ∃-unit clauses in φ are sufficient to produce two unit
clauses L1 and L2 in φ′′. All the other ∃-unit clauses in φ can be removed without
making the formula satisfiable, which contradicts our initial assumption that φ
is minimal false. ut

Subsequently, we assume that all DQ2-CNFb formulas are normalized to have
no clauses without an existentially quantified literal. This is justified by the
fact that clauses without bound variables can be moved in front of the prefix
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while preserving the equivalence. And in a 2-clause that contains a universal
and a free variable, the universal variable can be omitted. Obviously, clauses
consisting only of universal variables are unsatisfiable. We can also assume that
there are no clauses φi without free literals. Otherwise, we could replace such a
clause with clauses φi ∨ z and φi ∨ ¬z for a free variable z that already occurs
in the formula. But the transformations also work if we assume φfi := 0 for such
clauses without free literals.

The following lemma introduces a handy representation in which the minimal
false subsets of the quantified bound parts determine which combinations of the
free parts must be true.

Lemma 3. (MF Skeleton)
Let Φ = Q

∧
1≤i≤q(φ

b
i ∨ φ

f
i ) be a formula in DQ2-CNFb with non-empty bound

parts φbi and free parts φfi . Let

S(Φ) :=
{
Φ′ | Φ′ = Qφbi1 ∧ ... ∧ φ

b
ir is minimal false, 1 ≤ i1, ..., ir ≤ q

}
be the set of minimal false subformulas of the quantified bound parts of Φ. Then
we have the following equivalence:

Φ ≈
∧

(Qφbi1
∧...∧φbir )∈S(Φ)

(φfi1 ∨ . . . ∨ φ
f
ir
)

Proof. Let M(Φ) :=
∧

(Qφbi1
∧...∧φbir )∈S(Φ)

(φfi1 ∨ . . . ∨ φ
f
ir
) be the right side of

the equivalence. From right to left, let M(Φ) be true for a truth assignment τ
to the free variables. Suppose τ(Φ) is false. Let Qφ′ := Q(φbi1 ∧ . . . ∧ φ

b
ir
) be

the quantified bound parts for which τ(φfik) is false for 1 ≤ k ≤ r. Under the
assumption that τ(Φ) is false, Qφ′ is also false and contains therefore a minimal
false subformula, say Qφ∗ := Q(φbj1 ∧ . . . ∧ φ

b
jt
). Since τ(M(Φ)) is true, one of

the free parts φfj1 , ..., φ
f
jt

must be true for τ . That is a contradiction.
From left to right, let Φ be true for a truth assignment τ to the free variables.
Suppose τ(M(Φ)) is false. Then there is a clause φ′ := (φfi1 ∨ . . .∨ φ

f
ir
) in M(Φ)

for which τ(φfik) is false for 1 ≤ k ≤ r. Since Q(φbi1 ∧ . . . ∧ φ
b
ir
) is minimal false,

we can conclude that τ(Φ) is false in contradiction to our assumption. ut
On the basis of Lemmas 2 and 3, we now establish a poly-time transformation

from DQ2-CNFb to ∃2-CNFb.

Theorem 1. (DQ2-CNFb =poly−time ∃2-CNFb)
Every DQ2-CNFb formula Φ can be transformed in time O(|∀|2|Φ|) into an equiv-
alent ∃2-CNFb formula of length at most O(|∀|2|Φ|), where |∀| is the number of
universal quantifiers in Φ.

Proof. In the following, we treat conjunctions of clauses as sets of clauses. Let
Φ = Q{(φbi ∨φ

f
i ) | 1 ≤ i ≤ q} be a formula in DQ2-CNFb with non-empty bound

parts φbi and free parts φfi . We assume that Φ is forall-reduced, which means
each clause contains at most one literal over a universal variable. For universal
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variables u1, u2 (not necessarily distinct), we let Φ|u1, u2 denote the formula
which contains only those clauses of Φ in which the universal literal is over u1
or u2 and those clauses without universals:

Φ|u1, u2 := Q{(φbi ∨ φ
f
i ) | every universal literal in φbi is u1 or u2, 1 ≤ i ≤ q}

According to Lemma 3, we have

Φ ≈
∧

(Qφbi1
∧...∧φbir )∈S(Φ)

(φfi1 ∨ . . . ∨ φ
f
ir
)

where S(Φ) is the set of minimal false subformulas of the quantified bound parts
of Φ. Lemma 2 implies that each minimal false formula in S(Φ) has at most two
∃-unit clauses. In analogy to the above notation, we let S(Φ)|u1, u2 ⊆ S(Φ) be
those minimal false formulas in which every ∃-unit clause with a universal literal
contains either a literal over u1 or a literal over u2. Then the union of S(Φ)|u1, u2
for all pairs of universals u1, u2 equals S(Φ):

Φ ≈
∧

u1,u2∈∀var(Φ)

∧
(Qφbi1

∧...∧φbir )∈S(Φ)|u1,u2

(φfi1 ∨ . . . ∨ φ
f
ir
)

It is not difficult to see that S(Φ)|u1, u2 = S(Φ|u1, u2). Then by applying
Lemma 3 backwards, we obtain:

Φ ≈
∧

u1,u2∈∀var(Φ)

∧
(Qφbi1

∧...∧φbir )∈S(Φ)|u1,u2

(φfi1 ∨ . . . ∨ φ
f
ir
)

≈
∧

u1,u2∈∀var(Φ)

∧
(Qφbi1

∧...∧φbir )∈S(Φ|u1,u2)

(φfi1 ∨ . . . ∨ φ
f
ir
)

≈
∧

u1,u2∈∀var(Φ)
Φ|u1, u2

The prefix of each formula Φ|u1, u2 can be simplified, because only u1 and u2
occur as universal variables in the matrix, so the other universal quantifiers can
be dropped. By universal expansion of u1, u2 in Φ|u1, u2, we obtain an equiva-
lent existentially quantified formula. Its size is at most four times the length of
Φ|u1, u2. We perform this expansion for every formula Φ|u1, u2 and rename the
bound variables, such that different pairs of universal variables u1, u2 have dis-
tinct bound variables. Now, all existential variables can be moved up front, and
the result is an equivalent formula in ∃2-CNFb. Since there are at most |∀|2 pairs
of |∀| universal variables, the resulting formula has a length of O(|∀|2|Φ|). ut

If the whole formula matrix, including the free variables, is in 2-CNF, we write
DQ2-CNF∗ instead of DQ2-CNFb. In this special case, the above transformation
produces an existentially quantified formula with matrix in 2-HORN, which can
easily be solved in linear time. Together with the costs of the transformation,
we would have a complexity of O(|∀|2|Φ|) for determining the satisfiability of
a DQ2-CNF∗ formula. There is, however, a faster way to solve such formulas
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without the above transformation. Without loss of generality, we can focus on
DQ2-CNF formulas without free variables, because a DQBF∗ formula with prefix
Q = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) and free variables z1, ..., zr is satisfiable if and
only if the formula with prefix Q′ = ∀x1...∀xn∃z1()...∃zr()∃y1(xd1)...∃ym(xdm)
and the same matrix is true.

As outlined in [2], a quantified 2-CNF formula Φ can be represented as a
directed graph G(Φ). The idea is to associate with every clause L∨K the edges
¬L → K and ¬K → L for the nodes L,¬L,K and ¬K. Nodes are called
existential or universal if the corresponding variable is existentially or universally
quantified. For a unit clause L, we introduce the edge ¬L → L. By computing
the strongly connected components of the resulting graph, the satisfiability of
the formula can be determined in linear time: it is unsatisfiable if and only if
one of the following conditions holds:

1. There is a complementary pair of existential nodes, say y and ¬y, in some
strongly connected component, which is equivalent to the graph having a
path from y to ¬y and a path from ¬y to y.

2. A universal node over x is in the same strong component as an existential
node over y, and ∃y precedes ∀x in the prefix of Φ.

3. There exists a path from one universal node to another universal node (pos-
sibly both over the same variable).

This idea can also be applied to DQ2-CNF formulas. The only necessary mod-
ification is to replace condition 2 with the following condition 2’: “A universal
node over x is in the same strong component as an existential node over y, and
y does not depend on x.”

For Φ = Qφ ∈ DQ2-CNF, notice that if L1 → L2 is a path in G(Φ) then Φ is
true if and only ifQ(φ∧(¬L1∨L2)) is true. This can be shown by induction on the
path length with the observation that for two clauses ¬L∨V and ¬V ∨K (both
not purely universal) in φ, we have Qφ = 1 if and only if Q (φ∧ (¬L∨K)) = 1,
where V may be a universal or an existential literal. Then it is easy to see that
each of the conditions implies the unsatisfiability of the given formula.

To show the satisfiability of the formula if none of the above conditions hold,
the same marking algorithm as in [2] can be used, with the only modification
that we stop for condition 2’ instead of 2 if a strong component contains both
a universal and an existential node. Then it follows that the marking has the
same properties as the one in [2], except that a component containing a universal
node over some x contains only existential nodes over variables that depend on
x. Then it is clear that we can satisfy the formula in the same way as in the
original proof by assigning 0 or 1 to existential variables in purely existential
components. The truth value of the other existential variables is derived only
from those universals on which they depend, so the quantifier dependencies are
respected, and we immediately have the following theorem.

Theorem 2. DQ2-CNF∗ satisfiability is solvable in linear time.

9



4 Transformation from ∃2-CNFb to ∃2-HORNb

In the following, we consider graphs with the structure from the last section also
for ∃2-CNFb formulas Φ = ∃y1...∃ym

∧
1≤i≤q(φ

b
i ∨ φ

f
i ). The idea is to associate

only the bound literals with nodes in the graph, whereas the free parts become
the labels of the corresponding edges. A clause L ∨ K ∨ φfi with bound part
φbi = L ∨K and free part φfi is then associated with the labeled edges ¬L φfi

−→K

and ¬K φfi
−→L. A clause L ∨ φfi where the bound part is a unit literal is mapped

to an edge ¬L φfi
−→L. Figure 1 (left) shows the graph for the following example:

Φ = ∃a∃b (a ∨ b ∨ z1) ∧ (¬a ∨ b ∨ z2) ∧ (a ∨ ¬b ∨ z3) ∧ (¬a ∨ ¬b ∨ z4) .

ba
z

z

¬a¬b

z z z z

z

z

ba
z

z

¬a¬b

z z z z

z

z
¬b

z

z

ab

z z z z

z

z

Fig. 1: Example graph (left) and unfolding for variable a (right)

We now translate such graphs into ∃2-HORNb clauses by mapping an edge
L φfi
−→K to a clause ¬L∨K ∨φfi . The input formula Φ is satisfiable if and only if

there exists an assignment of truth values to the free variables such that for all
paths from a node yk to ¬yk and back to yk, at least one edge label evaluates
to true. The trick is now to encode this check separately for each quantified
variable. That means we create a subformula which is false if and only if there
is a path from y1 to ¬y1 and back to y1 with all edge labels being false, another
subformula for paths from y2 to ¬y2 and back to y2, and so on. Furthermore,
we unfold the graph for each yk by “mirroring” it around ¬yk, so that instead
of checking for a cycle, it is sufficient to detect a simple path from yk to ¬yk
and from there to the mirrored copy of yk. Suitable renamings make sure that
all nodes in the unfolded graph have unique names. Figure 1 (right) shows how
the graph for the previous example is unfolded for the variable a.
Theorem 3. (∃2-CNFb =poly−time ∃2-HORNb)
Every ∃2-CNFb formula Φ with |∃| existential quantifiers can be transformed in
time and space O(|∃| · |Φ|) into an equivalent ∃2-HORNb formula.
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Proof. Let Φ = ∃y1...∃ym
∧

1≤i≤q(φ
b
i ∨ φ

f
i ) ∈ ∃2-CNF

b. In addition to the previ-
ously stated assumption that the bound parts φbi are not empty, we also assume
that the quantified bound parts ∃y1...∃ym

∧
1≤i≤q φ

b
i yield an unsatisfiable for-

mula. Otherwise, Φ would be true for any truth assignment to the free variables
and therefore be a tautology. Furthermore, we do not allow multiple occurrences
of identical bound parts. If the formula contains clauses L∨K∨φfi and L∨K∨φfj
with the same bound part L∨K, we can replace the first clause with the clauses
L ∨ y ∨ φfi and ¬y ∨K ∨ φfi for a new existentially quantified variable y.

Let G be the graph associated with Φ as outlined above. The following pro-
cedure transforms G into a formula Φ∗ ∈ ∃2-HORNb:
For all bound variables y, compute the graphs G(y) and G(¬y) by the following
renamings with new names ay, a¬y, by:

G(y) is obtained from G by renaming y into ay and ¬y into a¬y,
all the other nodes are given new unique names.
G(¬y) is obtained from G by renaming ¬y into a¬y and y into by,
all the other nodes are given new unique names.

For all bound variables y,
compute the combined graph H(y) := G(y) ∪G(¬y),
with vy being the set of names of all nodes in H(y),
build the formula F (y) := ∃vy ay ∧ ¬by ∧

∧
(L

σ−→K)∈H(y)
(¬L ∨K ∨ σ).

Combine the formulas F (yi) for the bound variables y1, ..., ym in Φ into
Ψ := ∃vy1 ...∃vymF (y1) ∧ ... ∧ F (ym). Clearly, Ψ ∈ ∃2-HORNb.

In order to prove that Φ ≈ Ψ , we use the equivalent representations from
Lemma 3:
M(Φ) :=

∧
(∃φbi1∧...∧φ

b
ir

)∈S(Φ)(φ
f
i1
∨ ... ∨ φfir ) ≈ Φ

M(Ψ) :=
∧

(∃ψbj1∧...∧ψ
b
js

)∈S(Ψ)(ψ
f
j1
∨ ... ∨ ψfjs) ≈ Ψ

Since the matrix of an existentially quantified minimal false formula is minimal
unsatisfiable, we represent the formulas M(Φ) and M(Ψ) as follows:
M(Φ) = {(φfi1 ∨ ... ∨ φ

f
ir
) | (φbi1 ∧ ... ∧ φ

b
ir
) minimal unsat, φbik bound part in Φ}

M(Ψ) = {(ψfj1 ∨ ...∨ψ
f
js
) | (ψbj1 ∧ ...∧ψ

b
js
) minimal unsat, ψbjl bound part in Ψ}

Ad M(Ψ) |= M(Φ): Let ϕ := φfi1 ∨ ... ∨ φ
f
ir

be a clause in M(Φ). Then
β := φbi1 ∧ ... ∧ φ

b
ir

is minimal unsatisfiable, and according to [2], there must be
some variable y in β for which a path from y to ¬y and from ¬y to y exists in
the graph representing the propositional 2-CNF formula β. Since the graph G
has the same structure, it contains the same path. For fixed y, this path must
be unique and have length r, because β would not be minimal unsatisfiable
otherwise. Accordingly, there is also exactly one path of length r from ay to a¬y
and then to by in H(y), which implies that the corresponding bound parts of
the formula F (y) are minimal unsatisfiable and thus define a clause in M(Ψ).
By construction, the path in H(y) is labeled with the same free parts as the
corresponding path in G, namely {φfi1 , ..., φ

f
ir
}. This shows that M(Ψ) contains

the clause ϕ, so M(Ψ) |=M(Φ).
Ad M(Φ) |= M(Ψ): This direction is essentially the inverse of the preceding

case. Let ϕ := ψfj1 ∨ ...∨ψ
f
js

be a clause inM(Ψ). Due to the unique node names,
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a minimal unsatisfiable subset of bound parts ψbj1 ∧ ... ∧ ψ
b
js

in Ψ can only arise
within a single formula F (y) for some variable y. The existence of such a minimal
unsatisfiable subset of bound parts implies a path of length s from ay to a¬y
and to by in H(y). The path is labeled with {ψfj1 , ..., ψ

f
js
} and corresponds to a

path from y to ¬y and back to y in G with the same edge labels. Such a path
implies that there is an unsatisfiable set of bound parts φbi1 ∧ ... ∧ φ

b
is

in Φ. A
subset of these is minimal unsatisfiable, and the corresponding free parts are a
subset of the edge labels on the path. It follows that a subset of each clause ϕ
in Ψ is a clause in Φ, and thus M(Φ) |=M(Ψ). ut

5 Conclusion

We have shown that the formula class DQ2-CNFb is not significantly more ex-
pressive than ∃2-HORNb and that DQ2-CNFb satisfiability is also NP-complete.
An important intermediate result was a poly-time elimination of all universal
quantifiers in a DQ2-CNFb or Q2-CNFb formula, which might also be useful for
QBF solvers fighting against the exponential blowup caused by universal expan-
sion in the general case. Along the lines, we have also shown that DQ2-CNF∗

satisfiability can be decided in linear time and that universal expansion is also
correct for DQBF∗.

While there are formulas for which DQ2-CNFb and ∃2-HORNb are known to
be exponentially more concise than propositional CNF, the relationship between
∃2-HORNb and ∃HORNb remains unclear. The latter class has the same expres-
sive power as Boolean circuits with arbitrary fan-out, which are assumed to be
more powerful than propositional formulas. It is not known whether such circuits
can also be compactly encoded as poly-size ∃2-HORNb formulas or, equivalently,
whether every ∃HORNb formula has an equivalent ∃2-HORNb formula of poly-
nomial length. Perhaps, the poly-time equivalence between (D)Q2-CNFb and
∃2-HORNb can help to shed some light onto this problem. It would also be in-
teresting to investigate whether the transformation between the two classes can
be carried out with lower costs than with the procedure that is presented here.
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