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Abstract. We present a new approach for preprocessing Quantified
Boolean Formulas (QBF ) in conjunctive normal form (CNF ) by expand-
ing a selection of universally quantified variables with bounded expansion
costs. We describe a suitable selection strategy which exploits locality of
universals and combines cost estimates with goal orientation by taking
into account unit literals which might be obtained.
Furthermore, we investigate how Q-resolution can be integrated into this
method. In particular, resolution is applied specifically to reduce the
amount of copying necessary for universal expansion.
Experimental results demonstrate that our preprocessing can successfully
improve the performance of state-of-the-art QBF solvers on well-known
problems from the QBFLIB collection.

1 Introduction

Quantified Boolean Formulas (QBF ) generalize propositional formulas by al-
lowing variables to be quantified either existentially or universally, whereas all
variables are implicitly existentially quantified in propositional logic. This en-
hancement makes QBF a concise and natural modeling language for problems
in many areas, such as planning, scheduling or verification [13, 15], and many
Boolean functions have compact representations in QBF.

On the other hand, however, determining the satisfiability of formulas in
QBF is PSPACE-complete, which is assumed to be significantly harder than
the NP-completeness of the propositional SAT problem. But continued research
and technical advances have already enabled impressive progress [14] towards
the goal of developing powerful QBF solvers suitable for practical use. Some of
those state-of-the-art solvers (e.g. [10] and [18]) are extensions of the well-known
DPLL backtracking search algorithm for propositional logic [8]. Several other
techniques have also been successfully applied to QBF solving, such as symbolic
skolemization [2] or resolution and quantifier expansion [4], to name only a few.



There are in particular two characteristics of QBF which make it so difficult
to solve. The first is the fact that for every universal variable, the solver must
consider both possible values the variable might have. This obviously affects
the DPLL-based search algorithms, but also the other approaches like symbolic
skolemization, because an existential variable yi can be assigned different values
depending on the value of a universal whose quantifier precedes the quantifier of
yi. That behavior leads to the second inherent characteristic of QBF : the vari-
able ordering imposed by the nesting of the quantifiers must be respected when
solving the formula. In fact, the order of the quantifiers matters so much that the
complexity of the decision problem for QBF formulas in conjunctive normal form
(CNF ) is assumed to become more difficult with each alternation of quantifier
blocks in the prefix, resulting in the so-called polynomial hierarchy [12].

QBF instances from various application domains typically have significantly
less universal quantifiers than existentials. And if those formulas have multiple
alternations of quantifiers, the universal blocks usually tend to be rather short.
It therefore appears rewarding to tackle the problem of solving QBF formulas
by getting rid of the universally quantified variables. After all, a universally
quantified formula ∀x φ(x) is just an abbreviation for φ(0) ∧ φ(1), where the
matrix of the formula is duplicated for x being either 0 or 1. As explained later
in more detail, special care has to be taken for existentials which depend on x:
those have to be duplicated as well.

This expansion of universal quantifiers has been used successfully for QBF
solving by Ayari and Basin in QUBOS [1] and in Biere’s solver Quantor [4].
Both systems are based on the approach of ultimately expanding all universals
and then solving the remaining purely existentially quantified formula with an
ordinary SAT solver. In addition, Quantor can also eliminate existential variables
by Q-resolution whenever this is cheaper than expansion.

Unfortunately, expanding many universals can quickly lead to rapid growth
of the resulting formula. In this paper, we suggest an approach which does not
involve eliminating all universals in the formula. Instead, we restrict ourselves
to preprocessing QBF formulas in CNF form by eliminating certain universally
quantified variables with bounded expansion costs before feeding the resulting
formulas to an ordinary QBF solver. The method is based on the idea that
we can probably make it significantly easier for the solver when we take out
some specially selected cheap or particularly rewarding universals. On the other
hand, we avoid the costs of expanding expensive universals which might each
require copying almost the whole formula and trigger an exponential explosion.
We present a suitable selection strategy which exploits locality of universals and
combines cost estimates with goal orientation. Furthermore, we discuss how Q-
resolution can be integrated into this method. In particular, we apply resolution
specifically to reduce the amount of copying required in a subsequent universal
expansion step. This adds another strategic element to our variable elimination
procedure. We finish with an experimental evaluation and a conclusion with
suggestions for further improvements.



The previous work most closely related to ours is Biere’s resolve and expand
method [4] as implemented in Quantor. The most obvious difference is that we
do only preprocessing with selective expansion under bounded expansion costs.
In addition, Quantor only chooses quantifiers from the innermost universal scope
for expansion, and we generalize the idea by selecting universals from the whole
prefix. To make this work, we use tighter cost estimates and add goal orientation
by taking into account unit literals which might be obtained from the expansion.
Another major difference is our use of Q-resolution. While Quantor attempts to
balance resolution and expansion, we focus specifically on expansion and use
resolution only as a strategic means of reducing the expansion costs. Notice that
the solver QUBOS which was also mentioned above is very different from both
our approach and Quantor. It appears to be geared towards non-CNF formulas
or circuits and does not perform cost calculations, but just expands the universals
in the given order starting with the innermost. Furthermore, QUBOS does not
perform Q-resolution at all.

2 Preliminaries

A quantified Boolean formula Φ ∈ QBF in prenex form is a formula

Φ = Q1v1...Qkvk φ(v1, ..., vk)

with quantifiers Qi ∈ {∀,∃} and a propositional formula φ(v1, ..., vk) over vari-
ables v1, ..., vk. We call Q := Q1v1...Qkvk the prefix and φ the matrix of Φ.

Unless mentioned otherwise, we assume that QBF formulas are always in
prenex form. In addition, we assume that the matrix is in conjunctive normal
form (CNF ), where φ is a conjunction of clauses, with each clause being a
disjunction of negated or non-negated variables (literals).

A universally quantified formula ∀x φ(x) is defined to be true if and only
if φ(0) is true and φ(1) is true. Variables which are bound by universal quan-
tifiers are called universal variables and are usually given the names x1, ..., xn.
Similarly, an existentially quantified formula ∃y φ(y) is true iff φ(0) or φ(1).
Variables in the scope of an existential quantifier are existential variables and
have names y1, ..., ym. We write Φ = Q φ(x,y) or simply Φ = Q φ. Variables
which are not bound by quantifiers are free variables. In this paper, we do not
allow free variables in order to simplify the discussion. But we would like to point
out that universal expansion is in fact an equivalence-preserving transformation
when formulas with free variables are considered.

Without loss of generality, we require that no variable appears twice in Q
(i.e. that all variable names are unique). We call successive quantifiers of the
same kind in Q a quantifier block S. Blocks are defined to be maximal, such
that subsequent blocks Si and Si+1 are always labelled with different kinds
of quantifiers. We usually write Φ = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr)
for a QBF formula with universal quantifier blocks ∀Xi = ∀xi,1, ..., xi,ni

and
existential blocks ∃Yi = ∃yi,1, ..., yi,mi .



According to their sequence in the prefix, quantifier blocks are ordered lin-
early S1 < ... < Ss. We call Ss the innermost and S1 the outermost block. The
order of the quantifier blocks also induces a partial order on the variables. Let
l1 and l2 be two literals in Φ, then we define l1 < l2 if the variable in l1 occurs in
a quantifier block which precedes the block in which the variable of l2 appears.
If both variables occur in the same block, the order of the literals is undefined.

With |Φ|, we denote the size of a formula Φ = Q φ ∈ QBF , which we
calculate by adding the numbers of literals in all clauses of φ. Based on [4], we
also introduce notation to describe occurrences of variables and literals in the
formula. Given a literal l, we let o(l) denote the number of occurrences of l in a
given formula, and s(l) is defined to be the sum of the sizes of all clauses in which
l occurs. We further extend the latter notation to sets V of variables by letting
s(V ) be the sum of the sizes of all clauses in which a variable in V occurs.
Consider the example formula Φ = ∀x1∃y1∃y2 (x1 ∨ ¬y2) ∧ (¬y2 ∨ y1) ∧ ¬y1.
Here, we have o(y1) = 1, s(y1) = 2 and o(¬y2) = 2, s(¬y2) = 4. Furthermore,
s({y1, y2}) = 5.

3 The Basic Preprocessing Algorithm

3.1 Universal Expansion

Consider a QBF formula

Φ = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr)

with universal quantifier blocks ∀Xi = ∀xi,1, ..., xi,ni
and existential blocks ∃Yi =

∃yi,1, ..., yi,mi
. In order to expand a universal variable xi,j from the i-th universal

block, we have to generate two copies of the matrix φ, one where xi,j is 0, and
one where xi,j is 1. Furthermore, we must take into account that the existentials
in the subsequent blocks Yi, ..., Yr depend on xi,j and can have different truth
values assigned depending on whether xi,j = 0 or xi,j = 1. Accordingly, we
have to duplicate these existentials to reflect that degree of freedom. We get the
expanded formula

Φ′ = Q′ φ(x1,1, ..., xi,j−1, 0, xi,j+1, ..., xr,nr , Y1, ..., Yr) ∧
φ(x1,1, ..., xi,j−1, 1, xi,j+1, ..., xr,nr , Y1, ..., Yi−1, Y

′
i , ..., Y

′
r )

with the new prefix Q′ which we obtain from the original prefix when we drop xi,j
and replace blocks ∃Yk, k = i, ..., r, with ∃Yk, Y ′k = ∃yk,1, ..., yk,mk

, y′k,1, ..., y
′
k,mk

.
Of course, not all clauses are affected by the expansion. An implementation of
the algorithm will only have to touch clauses in which xi,j occurs and clauses
which must be copied due to the renaming of the existentials.

Strictly adhering to this algorithm might produce lots of redundant copies
when universal variables and their dependent existentials are only used locally,
which is typical for linearizations of formulas in non-prenex form. Consider the
example Φ = ∀x1∃y1∀x2, x3∃y2, y3 φ(x1, y1, x2, y2) ∧ ψ(x1, y1, x3, y3). The uni-
versal x1 is used globally in the whole formula, but x2 and x3 and the dependent



existentials y2 and y3 are only used locally in subformulas φ and ψ. However,
expanding x2 with the given procedure would require us to duplicate not only
y2, but also y3 and clauses in ψ with y3 in them. Of course, this is redundant,
since ψ(x1, y1, x3, y3) and ψ(x1, y1, x3, y′3) are clearly satisfiability-equivalent.

What we need to do is take into account how variables are actually connected
in common clauses. In [4], Biere introduces a suitable concept. His original for-
mulation was not meant for expanding universals from the whole prefix, therefore
we have to clarify that universals alone never propagate dependencies (because
∀v (φ ∧ ψ) ≈ (∀v φ) ∧ (∀v′ ψ[v/v′]) ). Our formulation is as follows:

We denote a variable v locally connected to another variable w if both occur
in a common clause, and we write v ∼ w. Given a universal variable x from the
i-th universal quantifier block, we now define

D
(0)
x := {y ∈ Yi ∪ ... ∪ Yr | y ∼ x}

D
(k+1)
x := {y ∈ Yi ∪ ... ∪ Yr | y ∼ y′ for some y′ ∈ D(k)

x }, k ≥ 0

Dx :=
⋃
k

D
(k)
x

We call the set Dx the dependent existentials of x. When expanding x, we only
need to duplicate those existentials and the clauses in which they occur.

3.2 Bounded Expansion

Even when observing locality of universals, repeated application of universal
expansion can easily lead to rapid formula growth. It is thus important for our
preprocessing to impose strict bounds:

– a global size limit Cglobal places an upper bound on the size of the prepro-
cessing output. Variables are only expanded while |Φcur| < Cglobal ·|Φ|, where
Φ is the original input formula (after some initial simplifications as described
below) and Φcur the current formula after some expansions.
In our experiments, we found rather small values between 2 and 4 to work
well without blowing up the formula too much.

– an individual cost limit Csingle is enforced for each single expansion step. We
only expand a universal x if the predicted expansion costs cx (see Section 4)
are bounded by cx ≤ Csingle · |Φcur|, where Φcur is the current formula. The
idea here is to expand the cheap universals and leave the expensive ones to
the solver, since the solver might be able to handle them at lower costs with
different strategies.
We achieved best results with Csingle = 0.5. If no universals have expansion
costs below this threshold, the preprocessing will not do anything (except for
the initial simplifications). It is due to this strategy of avoiding unfavorable
steps that our preprocessing usually does not have noticeable negative effects
on the performance of the QBF solver.

Listing 1 shows the basic structure of the preprocessor’s main loop and illustrates
where the bounds are applied. For completeness, we have also included the two
occasions where Q-resolution is invoked. This is discussed in Section 5.



Listing 1: The Main Loop of the Preprocessor

preprocess (Φ, Cglobal, Csingle) {
simplify Φ;
Φcur = Φ;
while (|Φcur| < Cglobal · |Φ|) {

resolve existentials with negative resolution costs;
choose universal x with smallest predicted costs cx;
if ((x 6= null) && (cx ≤ Csingle · |Φcur|)) {

reduce dependencies Dx by resolution;
expand x in Φcur;
simplify Φcur;

} else return Φcur;
}
return Φcur;

}

3.3 Simplifications

To reduce the actual costs of universal expansion, we have included the usual
simplification rules: unit propagation, pure literal elimination, universal reduc-
tion, detection of dual binary clauses and subsumption checking. As they are
standard techniques, we do not recall them here and refer the reader to [7, 4].

We apply the rules in a circular fashion where one simplification may trigger
the application of another simplification rule, until we reach closure. Initially,
we attempt to simplify the whole input formula. Later, we check for specific
simplifications as necessary. For the initial simplification, universal reduction is
probably the most important operation and allows us to assume for the remaining
process that all clauses are cleansed from trailing universal variables which do
not dominate any existentials in the same clause. Whenever we later modify
clauses or add new ones, we will make sure they are cleansed as well.

In the beginning, we also perform a full subsumption check. Inside the main
loop, however, we apply only the cheaper backward subsumption where old
clauses are checked for being subsumed by newly generated clauses. The dual
case where old clauses might subsume new clauses is not relevant to universal
expansion, since expansion never produces longer clauses.

4 Selection Strategy

Making good choices for the universals to be expanded is crucial to the success
of the preprocessing. Each expansion of a universal x produces expansion costs
cx = |φ′| − |φ|, where |φ| is the size of the matrix of the formula before the
expansion and |φ′| the size of the matrix afterwards, so cx indicates by how many
literals the size of the formula will increase when expanding x. For unsimplified
formulas, cx may also be negative. Since we want to select the universals with
the lowest expansion costs, we need a tight cost estimate for each universal in
the formula.



4.1 Estimation Scheme

Given a QBF formula Φ = ∀X1∃Y1...∀Xr∃Yr φ with universal quantifier blocks
∀Xi = ∀xi,1, ..., xi,ni

and existential blocks ∃Yi = ∃yi,1, ..., yi,mi
, Quantor [4]

estimates the costs of expanding a universal x from the innermost universal
quantifier block Xr by considering all existentials in Yr as dependent on x.
Then all clauses in which an existential y ∈ Yr occurs need to be duplicated.
Using the notation from Section 2, this means that s(Yr) literals must be added.
Furthermore, clauses from the original matrix φ in which x occurs negatively
are removed from φ(x/0), as well as clauses in φ(x/1) where x occurs positively.
Finally, all occurrences of x in φ(x/0) and ¬x in φ(x/1) are deleted. In total,
Quantor’s cost estimate is

cx ≤ s(Yr)− s(¬x)− s(x)− o(x)− o(¬x)

4.2 Including Locality

In our approach, we do not want to restrict ourselves to the innermost univer-
sal quantifier block. We also want to be able to expand universals from quan-
tifier blocks Xi with i < r. With the cost estimate given above, universals
from further outside have higher expansion costs, because we would need to
add s(Yi ∪ ... ∪ Yr). Accordingly, choosing universals further outside can only
be rewarding if additional factors are considered. For example, it might hap-
pen that the expansion of a universal further outside produces valuable unit
literals. Or we might encounter the linearization of a non-prenex formula like
Φ = ∀x1∃y1 ((∀x2∃y2∀x3∃y3 φ) ∧ (∀x′2∃y′2∀x′3∃y′3 ψ)). If φ and ψ are not bal-
anced in terms of size or difficulty, it may very well make sense to expand, e.g.
x2 before x′3, although x2 will be further outside than x′3 in the linearized prefix.

As described in [4], Quantor’s scheduling cannot take into account the locality
of universals at this point due to performance considerations. It only uses locality
during the actual expansion after a particular universal has already been selected.

Fortunately, our preprocessing scenario requires less frequent scheduling in
comparison to a full solver like Quantor. On the one hand, this is due to the
fact that we do not have to schedule resolutions. On the other hand, the bounds
Cglobal and Csingle are so tight that we will only expand a rather limited number
of universals, therefore we execute much less expansion cycles. Accordingly, we
can spend more time on selecting the variables and afford to actually compute the
sets Dxi

of dependent existentials for the universals xi in each expansion cycle.
This needs time O(e·m·|Φ|), where e is the number of expansion cycles (iterations
of the preprocessor’s main loop) and m the number of universals in Φ. Our
experiments show that this is still feasible: the total time spent for preprocessing
is typically only a small fraction of the time required for the successive run of
the solver. Furthermore, we assume that novel data structures like Benedetti’s
quantifier trees [3] might be applied here with great benefit in future versions of
our preprocessor.

Let Dx ⊆ Yi ∪ ... ∪ Yr be the existentials which depend on x. Then we have

cx ≤ s(Dx)− s(¬x)− s(x)− o(x)− o(¬x)



4.3 Goal Orientation

Expanding variables just because it is cheap to do so is a method without much
foresight. It turns out that we can further improve our selection strategy by
taking into consideration not only costs, but also goals which we might reach
by expanding certain universals. A rewarding goal in solving satisfiability prob-
lems is to obtain unit literals. Propagating them helps keeping clauses short
and might lead to discovering even more unit literals. This is in particular true
for formulas with 2-CNF subformulas, which might just collapse. Consider the
following example:

Φ = ∀x1, x2∃y1, y2 (x1 ∨ y1) ∧ (¬y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ ¬y2)

The universals are pure variables, but we ignore this here for simplicity (perhaps,
Φ is embedded into a larger formula). Then Dx1

= Dx2
= {y1, y2} and cx1

=
7 − 2 − 1 = 4 and cx2

= 7 − 3 − 1 = 3, so we expand x2. After simplifying by
removing pure existential literals, we obtain the new matrix Φ′ = ∀x1∃y1, y2 (x1∨
y1) ∧ (¬y1 ∨ y2) ∧ (¬y1 ∨ ¬y2) (there are no renamed existentials, because they
were simplified away). Had we expanded x1 instead, the whole matrix would
have collapsed to the empty clause after propagating the unit literals y1 and y2
when x = 0 and removing the pure existentials when x = 1. Of course, the same
happens when we continue on Φ′. But since our preprocessing only expands a
limited number of universals, we might stop after x2 and miss out on this.

We did not want to have separate measures for expansion costs and benefits,
because it would be necessary to balance them somehow. Fortunately, unit liter-
als which are immediately obtained from expanding a universal also have a direct
impact on the expansion costs of that universal, as seen in the example. We can
therefore simply subtract from the expansion costs the reductions through im-
mediate unit literals, making our cost estimates even tighter and allowing us to
continue using costs as our single measure for choosing universals.

In order to do so, we need to know those unit literals. In each iteration of
the preprocessor’s main loop, we have to perform for each universal variable x
a complete unit propagation under the assumption that x = 0, and then under
the assumption x = 1. Since unit propagation can be performed in linear time,
this needs O(e ·m · |Φ|), where e is the number of expansion cycles (iterations)
and m the number of universals in Φ. As with the calculation of the variable
dependencies above, we claim this is still feasible due to the small values of e.

Let U0 be the unit literals induced by assuming x = 0 and U1 the units when
x = 1. Then it might happen that U0 (or analogously U1) contains unit literals
li = ±yi with existentials yi whose quantifier precedes the quantifier of x. But
since the yi do not depend on x, such li must also be unit literals when x = 1.
That means we can propagate those units immediately (and remove them from
U0), even without actually expanding x (similar to [16]). Obtaining units in that
way without expansion is a small additional benefit of our unit calculations.

Now let sU0\±x be the sum of the sizes of all clauses in which a unit literal
from U0 occurs, but not ±x (we do not want to count those clauses twice). Those
clauses are removed from the expansion. Furthermore, let o¬U0\¬x be the number



of clauses in which the negation of a unit literal from U0 occurs, but not ¬x. In
those clauses, the negation of the unit literal will be removed. With sU1\±x and
o¬U1\x defined analogously, our cost estimate cx is finally given as

cx ≤ s(Dx)− sU0\±x− sU1\±x− o¬U0\¬x− o¬U1\x− s(¬x)− s(x)− o(x)− o(¬x)

5 Integrating Q-Resolution

Q-Resolution [11] extends the concept of propositional resolution to QBF. We
can use it to eliminate an existential variable y in a formula Φ ∈ QBF by
performing all possible resolutions on y. We can then drop the clauses in which
y occurs positively or negatively and replace them with the set of resolvents
after performing universal reduction. One problem with this approach is that it
may produce large clauses. An even more serious problem is the huge number
of resolvents which might be generated when an existential occurs frequently in
both phases and we must resolve all positive occurrences with all negative ones.

Accordingly, our preprocessing focuses mainly on universal expansion. Nev-
ertheless, a limited amount of resolution has proven helpful as well. There are
two cases when we will apply resolution:

1. Whenever we can eliminate existentials without increasing the formula size.
2. If we can use resolution specifically to reduce costs of a scheduled expansion.

In order to estimate the costs cy of eliminating an existential y by resolution, we
use the upper bound given in [4]:

cy ≤ o(¬y) · (s(y)− o(y)) + o(y) · (s(¬y)− o(¬y)) − (s(y) + s(¬y))

At the beginning of each iteration through the preprocessor’s main loop, we
check whether there are existentials yi for which this cost estimate cyi

is negative,
so that we can be sure not to increase the size of the formula. We then choose
the cheapest such existential, i.e. the one for which the cost estimate is the most
negative, and eliminate it by resolution. The process is repeated as long as there
are existentials with negative cost estimates.

Performing those resolutions before a universal expansion cycle is like a gen-
eral cleanup that reduces the number of existentials we have to consider and to
copy. But we also suggest a more specific application of resolution which only
takes place after we have chosen a particular universal x for expansion. Our goal
is to reduce its expansion costs cx. A quick glance at the cost estimates from
the last section shows that there are basically two components which determine
the value of cx: the occurrences of ±x itself and the occurrences of dependent
existentials. We are now going to apply resolution to attack the latter.

The idea is to resolve only on dependent existentials in Dx immediately
before expanding x. Eliminating such an y ∈ Dx yields a double benefit, because
we do not only get rid of y itself, but also of its soon-to-be-created copy y′. In
addition, we may also save copying some clauses during the following expansion.
For example, a clause (y ∨ y2) with y ∈ Dx and y2 6∈ Dx must be duplicated



when x is expanded, but when we resolve on y with (¬y∨y3) and y3 6∈ Dx before
expanding x, the resolvent (y2∨y3) does not need copying, since both literals do
not depend on x. Of course, resolution usually produces many resolvents, some
of which probably still require copying. In our example, the formula might also
contain a clause (¬y ∨ y4) with y4 ∈ Dx, so that we obtain a second resolvent
(y2 ∨ y4) which is still dependent on x.

Let δ be an estimate of the average fraction of resolvents which must be
duplicated (0 ≤ δ ≤ 1). Then we can estimate the costs cy|x of resolving an
existential y ∈ Dx before x is expanded:

cy|x ≈ (1+ δ) · (o(¬y) · (s(y)− o(y)) + o(y) · (s(¬y)− o(¬y))) − 2 · (s(y) + s(¬y))

We obtain this estimate from the upper bound for resolution given above. The
factor 2 reflects the assumption that each clause in which y occurs would have
been copied in the subsequent universal expansion (for simplicity, we do not take
into account that y and x might occur in common clauses). The factor (1 + δ)
indicates the costs of duplicating in the expansion a portion δ of the resolvents.
In our experiments, we found δ = 0.5 to work well when we resolve away all
existentials y ∈ Dx for which the cost estimate cy|x is negative before actually
expanding x.

Resolution also reveals an interesting special case. Consider a scenario where
we have a universal xj and two sets D′xj

and D′′xj
of existentials which are locally

connected to xj . Further assume that one of those existentials, say ỹ, has the
property that it constitutes the only link which propagates the local connectivity
from xj and D′xj

on the one hand to D′′xj
on the other hand.

Can we destroy that link to make the existentials in D′′xj
independent from

xj? If ỹ occurs positively in clauses with existentials from D′xj
and negatively in

clauses with existentials from D′′xj
, resolving on ỹ will directly link D′xj

and D′′xj
,

so nothing is gained in this case. But assume ỹ only occurs positively with both
D′xj

and D′′xj
. Also assume that all negative occurrences of ỹ are in clauses with

universals other than xj and existentials which do not depend on xj . Now we
can resolve away ỹ, and the existentials in D′xj

and D′′xj
will not be connected

anymore, since ỹ has been replaced with variables which do not propagate the
dependency.

In this scenario, the special property is that we have an existential y in
Dxj = D′xj

∪ D′′xj
where one phase of y occurs only in clauses with variables

v 6∈ Dxj
and v 6= xj . A closer investigation of this special case reveals that we do

not need to perform the actual resolution. Instead, we can simply remove y from
Dxj

, because it does in fact not depend on xj : assume that with fixed assignments
to x1, ..., xj−1, a given formula Φ is satisfiable if y is assigned different values in
the two cases xj = 0 and xj = 1, i.e. y = ε for xj = 0 and y = ¬ε for xj = 1.
Without loss of generality, assume that ¬y is the phase of y which occurs only in
clauses with variables v 6∈ Dxj

and v 6= xj . Then none of those clauses contains
a variable which depends on xj , yet those clauses remain satisfied when y flips
from ε to ¬ε as xj changes. That means those clauses are true regardless of the
value of y. Then we can choose y = 1 for both xj = 0 and xj = 1, and all
clauses with positive y will be satisfied as well, which means the whole formula



is satisfiable. With the obvious argument that if Φ is unsatisfiable when we allow
different values for y depending on xj , this also implies the unsatisfiability of Φ
when y must have the same value for xj = 0 and xj = 1, we have the following
theorem:

Theorem 1. Given Φ ∈ QBF , let x be a universal and y be an existential
variable in the scope of x where one phase of y only occurs in clauses with
v 6∈ Dx and v 6= x. Then universal expansion of x does not need to duplicate the
variable y.

For performance reasons, our implementation does not check this condition
while computing the dependency sets during the scheduling of the expansions,
but only prior to executing a scheduled expansion.

6 Implementation and Experiments

We have implemented our preprocessing approach in Java on top of our existing
logic framework ProverBox [5, 6]. Using the framework’s data structures and ba-
sic algorithms has allowed us to quickly build a working preprocessor, although
we sacrifice some performance for genericity, as the primary goal of the frame-
work is to integrate different logics and different theorem proving algorithms. In
addition, our preprocessor itself it not optimized yet.

The choice of the two bounds Cglobal and Csingle which control the amount
of preprocessing performed (see Section 3.2) obviously has a large impact on the
performance of our preprocessor. For space considerations, we do not compare
different parameter settings against each other. Instead, we have chosen one
successful setting for all of the following experiments.

For the global size limit Cglobal which determines how much larger than the
original formula the preprocessed formula may be, we found a value of 2 to
perform best. We observed that when formulas are growing, the solver perfor-
mance is often increasingly dominated by the sheer formula size rather than its
complexity. By keeping Cglobal quite low, we try to avoid this effect.

While restricting the resulting formula to about twice the size of the input
formula means that in the worst case, only 1 − 2 universals may be expanded,
we can typically expand up to 5−10 of them. For various QBFLIB formulas, the
number of expanded universals is even higher: for example, it is usually around
30 for the ASP problems, and in some Adder formulas, we can expand up to 130
universals. Of course, this number does not include universals merely declared
in the prefix, but not used at all in the formula.

The individual cost limit Csingle determines how expensive a single expansion
can be. We achieved best overall results with a value of 0.5, where each expansion
is allowed to copy at most half of the current formula. Universals with higher
expansion costs are probably better handled by the QBF solver itself.

We have conducted our experiments with two state-of-the-art QBF solvers,
sKizzo [2] and SQBF [17], on an Athlon64 3400+ with 2GB RAM running Win-
dows XP/Cygwin and Java 6. Each solver has been executed under Cygwin in



its latest publicly available release and with default parameters. We have applied
both solvers, each with and without preprocessing, on a selection of 12 families
of benchmarks with a total of 688 instances from the QBFLIB collection [9]. We
tried to choose benchmark families of such a difficulty level that the solvers could
solve most, but not all formulas of a family within a time limit for each formula
of 300 seconds. As expected, when the preprocessor was used, the time limit and
the time recorded were for running both the preprocessor and the solver.

As usual, if an instance cannot be solved, e.g. due to a timeout or an out-
of-memory condition, it is counted as the timeout value. To make the experi-
ments less time-consuming, we have performed them in a give-up mode where
a (sub)family of formulas is quit whenever we encounter an instance solved by
neither the solver nor the solver with preprocessor. For example, neither sKizzo
itself nor sKizzo with preprocessor can solve the instance adder-14-sat, so we skip
adder-16-sat (without counting it as timeout) and continue with adder-2-unsat.
Of course, this requires that the instances are approximately sorted in order of
ascending difficulty. Where this was not already the case by default, we grouped
formulas in obvious subfamilies (e.g. adder-sat, Adder2-sat, ... or cnt, cnt-r, ...).

An overview of the results is given in Table 1. It provides for each benchmark
family the number of instances solved and the time (in seconds) required by the
original solver as well as the combination of preprocessor and solver (sKizzo+pre
resp. SQBF+pre). We can observe that both solvers show noticeable overall gains
from the preprocessing: sKizzo+pre could solve 13, 5% more problems in 47, 9%
of the time originally recorded, and SQBF+pre did even 49, 5% more problems
in 23, 4% of the time. This appears to back our basic assumption that QBF
solvers can indeed benefit from selectively removing universals beforehand.

Table 1: Benchmark Results

sKizzo sKizzo+pre SQBF SQBF+pre
Benchmark Family #inst solved time solved time solved time solved time
Adder 32 13 1,568 13 1,655 4 1,203 4 1,201
ASP 40 26 5,181 40 1,068 0 12,000 40 1,030
Blocks 13 9 368 9 371 10 309 10 323
Connect3 cf_3_3* 21 7 381 6 610 11 1,816 16 474
Counter 88 52 3,939 56 2,563 37 3,101 38 2,732
CounterFactual ncf_4* 320 108 1,540 109 1,295 87 14,819 124 1,244
Evader-Pursuer 4x4-log 7 1 320 1 319 7 13 7 14
k_branch_n 21 6 661 5 698 4 455 4 356
k_path_n 21 21 164 21 167 5 1063 7 500
RobotsD2 *.2, *.4, *.8 29 10 6,180 29 94 20 2,897 29 110
Sorting_networks 84 24 1,658 26 1,499 9 1,240 11 879
Szymanski 12 4 335 4 348 0 300 0 300
Total 688 281 22,295 319 10,687 194 39,216 290 9,163



For a closer look at the results, we have marked the numbers of solved in-
stances in bold whenever one contestant could solve more problems than the
other. We observe that there are only two cases (k_branch_n and Connect3
with sKizzo+preprocessing) where the number of solved instances is lower by
one with preprocessing. This seems to justify our hypothesis that enforcing tight
bounds on the expansion can largely prevent negative effects. On the other hand,
there are various families where preprocessing helped solve more problems.

7 Conclusion

Making it easier for QBF solvers by selectively removing universal variables in
a preprocessing step - a simple yet intriguing idea. We have successfully realized
it on the basis of the proven universal expansion method, which we have made
bounded and more general by choosing universals from the whole prefix while
giving consideration to the locality of variables. In addition, we have added an el-
ement of goal orientation to the variable selection by rewarding the generation of
unit literals. We have also integrated Q-resolution into our approach and shown
how it can be applied specifically to reduce the amount of copying necessary for
universal expansion. In concluding experiments with two state-of-the-art solvers
on QBFLIB problems, our preprocessing showed noticeable performance gains.

In the future, we would like to evaluate the inclusion of further strategic
elements into our variable selection, such as attempting to eliminate complete
universal quantifier blocks if they are small, or giving preference to universals
that appear in short clauses, or trying to make local areas of the formula com-
pletely free of universals. In addition, we will attempt to further optimize our
implementation.
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