
Studies in Logic, Vol. 3, No. 3 (2010): 1–23
PII: 1674-3202(2010)-03-0001-23

The Power of Auxiliary Variables for Propositional
and Quantified Boolean Formulas∗

Uwe Bubeck
Computer Science Institute, University of Paderborn

bubeck@upb.de

Hans Kleine Büning
Computer Science Institute, University of Paderborn

kbcsl@upb.de

Abstract. Using auxiliary variables to introduce definitions is a popular and powerful tech-
nique in knowledge representation which can lead to shorter and more natural encodings with-
out long repetitions. In this paper, we formally define the notion of auxiliary variables and then
examine their expressive power and discuss interesting applications.
We relate the idea of reusing intermediate results without copying by definitions to similar con-
cepts in other representations of Boolean functions. In particular, we show that propositional
logic with definitions has essentially the same expressive power as Boolean circuits with arbi-
trary fan-out and existentially quantified Boolean formulas in which the bound variables satisfy
the Horn property (called ∃HORNb).
The paper also considers restrictions on the structure of definitions and extensions of propo-
sitional definitions. In particular, we examine the relationship between positive propositional
definitions and positive definitions with existential quantification or, equivalently, the relation-
ship between ∃HORNb formulas and existentially quantified CNF formulas without the Horn
restriction on the bound variables (∃CNF∗). A further extension is to allow arbitrary quantifiers
or, equivalently, nesting of Boolean formulas. The expressive power of the bound variables in
a quantified CNF formula is shown to be determined by the structure of minimal unsatisfiable
or minimal false subformulas of the bound parts of the clauses.

1. Introduction

Driven by the development of increasingly powerful SAT solvers, it has become
quite popular in the last few years to solve difficult decision problems by encoding
them as propositional formulas. Prominent examples include bounded model check-
ing ([4]) or planning ([11]). The success of SAT-based problem solving relies heavily
on finding good propositional encodings of the original problem. This can, however,
be a difficult task, because the limited expressive power of propositional logic often
prevents the modeling of complex situations in a direct way. Having to use alternate
and more indirect formulations is not only time-consuming and error-prone, but also

Received 2010-08-03
∗Supported by the German Research Foundation (DFG), grant KL 529 / QBF.

2 Studies in Logic, Vol. 3, No. 3 (2010)

increases the risk of ending up with very large encodings, possibly with significant
redundancy, especially for interesting real-world problems.

For example, consider the problem of determining whether a set of objects
{o1, ..., or}, given as binary vectors {z1, ..., zr}, zi = (zi,1, ..., zi,k) ∈ {0, 1}k, con-
tains at least one object which satisfies some property π. If we want to encode this
check into a propositional formula which depends exactly on z1, ..., zr, there does
not seem to be a feasible alternative to a formula like π(z1) ∨ ... ∨ π(zr). However,
having multiple copies of π can be very inefficient if π itself is a complex formula.
The solution is to introduce additional variables which can be used as abbreviations,
for example as follows:

((x ↔ z1) ∨ ... ∨ (x ↔ zr)) ∧ π(x)

Again, x should be a vector of binary variables, and the bi-implications should be
understood as being component-wise. The obvious advantage of this encoding is that
it requires only one copy of π. But on the other hand, this new formula is not logically
equivalent to π(z1)∨ ...∨ π(zr) in the sense that each satisfying assignment of truth
values to the variables in one formula must also be a satisfying truth assignment for
the other formula. The problem is that this criterion also includes arbitrary values of
x, not only the ones satisfying π. This can be avoided by using a weaker concept of
equivalence which considers only the original variables z1, ..., zr or by augmenting
propositional logic with existential quantifiers which bind the additional variables, so
that they become local to the formula and are no longer explicitly considered when
checking for equivalence. In both approaches, the key element is the distinction
between the original variables and newly introduced local variables, which we will
in the following refer to as auxiliary variables.

Auxiliary variables also play an important role in transforming formulas from
one representation into another one. For example, many state-of-the-art SAT solvers
are specifically designed for propositional formulas in conjunctive normal form (CNF),
that is, conjunctions of disjunctions of positive or negative occurrences of variables.
It is well known that there are propositional formulas for which every equivalent CNF
formula is exponentially longer. This exponential growth can be avoided by introduc-
ing auxiliary variables to abbreviate subformulas which violate the CNF structure.
For example, the Tseitin transformation [16, 19] produces linear-size CNF formu-
las by successively replacing non-CNF subformulas of the form α ∨ (β ∧ π) with
(α ∨ x) ∧ (x→ (β ∧ π)) or, equivalently, (α ∨ x) ∧ (¬x ∨ β) ∧ (¬x ∨ π) for a new
auxiliary variable x.

The examples presented so far illustrate that auxiliary variables are an important
tool for obtaining short propositional encodings. The main goal of this work is to
explore the expressive power of auxiliary variables in more detail. We will see that
the idea of using auxiliary variables to define abbreviations for reusing intermediate
results without copying can be related to similar concepts in other representations of

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 3

Boolean functions, for example the fan-out in Boolean circuits. Along the way, we
also present typical encoding patterns for modeling with auxiliary variables, which
can be very helpful when developing new encodings or transformations.

2. Preliminaries

We begin by recalling the basic concepts and terminology which will be needed
in the following sections.

It is often useful to assume that propositional formulas are given in a canonical
normal form. Negation normal form (NNF) requires that every negation occurs im-
mediately in front of a variable. A literal is then a positive propositional variable (v)
or a negated variable (¬v), and a clause C = l1 ∨ ... ∨ lh is a disjunction of literals.
As mentioned in the introduction, a formula is in conjunctive normal form (CNF) if
and only if it is a conjunction of clauses φ = C1 ∧ ... ∧ Cq. The dual disjunctive
normal form (DNF) denotes a disjunction of conjunctions of literals.

Quantified Boolean formulas (QBF) extend propositional logic with quantifiers
over variables. ∀x φ(x) is defined to be true if and only if φ(0) is true and φ(1) is true.
Variables which are bound by universal quantifiers are called universal variables.
Similarly, ∃y φ(y) is defined to be true if and only if φ(0) or φ(1) is true. In this
case, y is called an existential variable. To save parentheses, we assume that the
logical connectives have a higher binding priority than the quantifiers. A quantified
Boolean formula Φ is in prenex form if it has the form Φ = Q1v1...Qkvk φ with
quantifiers Qi ∈ {∀,∃} and a propositional formula φ. We call Q := Q1v1...Qkvk

the prefix and φ the matrix of Φ. Unless mentioned otherwise, we assume that QBF
formulas are always in prenex form.

Variables which are not bound by quantifiers are free variables. Formulas with-
out free variables are called closed. If free variables are allowed, we indicate this
with an additional star ∗ after the name of the formula class. Accordingly, QBF is the
class of closed quantified Boolean formulas, and QBF∗ denotes quantified Boolean
formulas with free variables.

A closed QBF formula is either true or false. It is true if and only if there exists
an assignment of truth values to the existential variables depending on the preceding
universal variables such that the propositional matrix of the formula is true for all
values of the universal variables. For example, Φ = ∀x∃y (x ∨ y) ∧ (¬x ∨ ¬y) is
true, because by choosing y = 1 when x = 0 and y = 0 when x = 1, we can satisfy
the formula for all values of x.

The truth value of a QBF∗ formula depends on the values of the free variables. A
QBF∗ formula Φ(z) is satisfiable if and only if there exists a truth assignment t(z) :=
(t(z1), ..., t(zr)) ∈ {0, 1}r to the free variables z = (z1, ..., zr) for which Φ(t(z)) is
true. Here, Φ(t(z)) denotes the closed QBF formula that results from substituting the
truth values t(z1), ..., t(zr) for the free variables z1, ..., zr. For example, the formula

4 Studies in Logic, Vol. 3, No. 3 (2010)

Φ(z) = ∀x∃y (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ z) is satisfiable: for z = 1,
we can choose y = ¬x, and substituting z and y produces the tautological matrix
(x ∨ ¬x ∨ 0) ∧ (¬x ∨ x) ∧ (x ∨ 1). In that particular example, the formula is also
true for z = 0: in this case, we can choose y = 0, and all clauses are satisfied.

It is well known that determining the satisfiability of formulas in QBF or QBF∗

is a PSPACE-complete problem [15], which is assumed to be significantly harder than
the NP-completeness of the propositional SAT problem. More precisely, it appears
that there is a close relationship between the number of quantifier alternations in the
prefix of quantified Boolean formulas and the complexity of the corresponding satis-
fiability problem, giving rise to the polynomial-time hierarchy of complexity classes
[18, 21]. It is clear that purely existentially quantified Boolean formulas (∃BF∗ or
∃CNF∗ if the matrix is in CNF) are not more difficult to solve than propositional
formulas, because in this case, it is sufficient to find a satisfying truth assignment to
the matrix. An alternative to placing restrictions on the prefix is to consider quanti-
fied Boolean formulas with restrictions on the structure of the matrix. Well-known
tractable examples are quantified Horn formulas (QHORN∗) [8] and quantified 2-
CNF (Q2-CNF∗) [2].

In this paper, our main interest is to compare the expressive power of different
formula classes. This involves determining for formulas in one class the length of
the shortest equivalent formula in the other class. Two QBF∗ formulas Φ1(z1, ..., zr)
and Φ2(z1, ..., zr) are said to be equivalent (Φ1 ≈ Φ2) if and only if Φ1 |= Φ2

and Φ2 |= Φ1, where semantic entailment |= is defined as follows: Φ1 |= Φ2 if
and only if for all truth assignments t(z) = (t(z1), ..., t(zr)) ∈ {0, 1}r to the free
variables z = (z1, ..., zr), we have Φ1(t(z)) = 1 ⇒ Φ2(t(z)) = 1. That means
Φ1 ≈ Φ2 if and only if Φ1(t(z)) = Φ2(t(z)) for all assignments t(z) ∈ {0, 1}r.
These definitions apply to propositional formulas as well if we treat them as QBF∗

formulas without quantifiers. That also allows us to consider equivalence between
a QBF∗ formula on the one hand and a propositional formula on the other hand. In
this case, the free variables of the QBF∗ formula correspond to the variables in the
propositional formula, and for all truth value assignments to them, both formulas
must evaluate to the same truth value.

The notion of equivalence can also be extended to different representations of
Boolean functions which are not formulas, e.g. Boolean circuits. A Boolean circuit is
an acyclic directed graph with exactly one outgoing edge and some input nodes that
are labeled with Boolean variables. The other nodes are AND-, OR-, and NOT-gates
that each have two (AND and OR) or one (NOT) incoming and an arbitrary number
of outgoing edges. The fan-out of a circuit is the maximum number of outgoing
edges of the AND- and OR-gates. By De Morgan’s law, we can transform in linear
time an arbitrary circuit into an equivalent circuit in standard form, where the inner
nodes are only AND- and OR-gates and the inputs are variables x and/or negated
variables ¬x. Subsequently, when we talk about circuits, we always mean circuits

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 5

in standard form. The output of a circuit c over variables z1, ..., zr, each occurring
positively and/or negatively as input, is written as c(z1, ..., zr). We say that c is
equivalent to a QBF∗ or propositional formula Φ with (free) variables z1, ..., zr if
and only if c(t(z1), ..., t(zr)) = Φ(t(z1), ..., t(zr)) for all truth assignments t(z) =
(t(z1), ..., t(zr)) ∈ {0, 1}r. In terms of Boolean functions, c ≈ Φ means that c and
Φ represent the same Boolean function.

For a propositional or quantified Boolean formula Φ, we let |Φ| denote the length
of Φ. It is counted as the number of occurrences of variables, including the quantified
variables in the prefix in the case of a quantified Boolean formula. For example, the
formula ∀x∃y (x ∨ y) ∧ (¬x ∨ ¬y) has length 6. For a circuit C, we let the circuit
size |C| be the number of gates in C.

3. Auxiliary Variables

In this section, we will introduce a formal definition of auxiliary variables. It is
motivated by the following initial examples.

Let α = (a ∨ b ∨ c ∨ d) be a clause with four literals. When we want to
represent this clause by 3-clauses, we introduce a new variable x and replace α with
β = (a∨ b∨x)∧ (¬x∨ c∨ d). Clearly, α and β are not equivalent. But with respect
to formulas σ over the variables a, b, c, d, it holds that α |= σ iff β |= σ.

As mentioned before, the Tseitin procedure for linear-size CNF transformation
replaces subformulas of the form α ∨ (β ∧ π) with (α ∨ x) ∧ (x → (β ∧ π)) ≈
(α ∨ x) ∧ (¬x ∨ β) ∧ (¬x ∨ π) for a new variable x. Again, the original and the
resulting formula have the same consequences over the variables occurring in α, β
and π.

The last example shows a length reduction by auxiliary variables. For the for-
mula φ =

∧
1≤i,j≤n(ai ∨ bj), we choose ϕ =

∧
1≤i≤n(ai ∨ x) ∧

∧
1≤j≤n(¬x ∨ bj).

Then both formulas are again equivalent with respect to the original variables. This
kind of restricted equivalence is formally introduced in the following definition.

Definition 1 (Restricted Equivalence) [9, 13]
Let z = z1, ..., zn be variables, and let α and β be propositional formulas. α is

restricted equivalent to β for z if and only if for every propositional formula σ over
the variables z, it holds that α |= σ iff β |= σ. For the restricted equivalence, we
write α ≈{z} β.

For propositional Horn formulas, the equivalence problem can be solved in
quadratic time, since the satisfiability problem is decidable in linear time. ([13]) But
the restricted equivalence problem is coNP-complete for Horn formulas. ([9])

We have just seen how to transform clauses with more than three literals into
3-clauses. Can we apply a similar idea to shorten a conjunctive term α = (a ∧

6 Studies in Logic, Vol. 3, No. 3 (2010)

b ∧ c ∧ d) inside a formula in disjunctive normal form? If we replace α with β =
(a ∧ b ∧ x) ∨ (¬x ∧ c ∧ d), both formulas are only equivalent with respect to a,
b, c and d if we require that β holds for all possible values of x, that means if we
bind x with a universal quantifier. We end up with a quantified Boolean formula
∀x (a∧b∧x)∨(¬x∧c∧d). Similar to the introductory examples at the beginning of
this section, x is used only as a helper variable which has no meaning in the original
formula α. Accordingly, the formal definition of auxiliary variables should reflect not
only the situation in the earlier examples, but also the last example with a universally
quantified variable. By negating α and β, this last example can be mapped to the dual
problem of shortening long CNF clauses, for which we have observed that α ≈{z} β.
That means ¬α ≈{z} ¬β characterizes the last example, so we also include this
case into the following definition of auxiliary variables. Please notice that in general,
α ≈{z} β does not imply ¬α ≈{z} ¬β. For example, for the formulas φ = a and
ψ = a ∧ x, we have φ ≈{a} ψ, but not ¬a ≈{a} ¬a ∨ ¬x, since ¬a ∨ ¬x 6|= ¬a.

Definition 2 (Auxiliary Variables)
For variables z = z1, ..., zn and x = x1, ..., xm, let α(z) and β(z,x) be formu-

las over the variables z and z,x. The variables x are called auxiliary variables for
α(z) and β(z,x) if and only if α(z) ≈{z} β(z,x) or ¬α(z) ≈{z} ¬β(z,x).

The definition of auxiliary variables by restricted equivalence for the free vari-
ables z can be replaced with full logical equivalence when adding quantifiers for the
auxiliary variables.

Lemma 3 (Alternative Description of Auxiliary Variables)
Let α(z) and β(z,x) be formulas over the variables z and z,x. Then the fol-

lowing holds:

1. α(z) ≈{z} β(z,x) if and only if α(z) ≈ ∃xβ(z,x).
2. ¬α(z) ≈{z} ¬β(z,x) if and only if α(z) ≈ ∀xβ(z,x).
3. The variables x are auxiliary variables for α(z) and β(z,x) if and only if
α(z) ≈ ∃xβ(z,x) or α(z) ≈ ∀xβ(z,x).

Proof 1. From left to right, α(z) ≈{z} β(z,x) implies that β(z,x) |= α(z) and
α(z) |= β(z, 0, ..., 0, 0)∨β(z, 0, ..., 0, 1)∨...∨β(z, 1, .., 1, 0)∨β(z, 1, .., 1, 1).
The latter is equivalent to α(z) |= ∃xβ(z,x), and β(z,x) |= α(z) implies
∃xβ(z,x) |= α(z). In total, α(z) ≈ ∃xβ(z,x).
From right to left, α(z) ≈ ∃xβ(z,x) implies that α(z) |= σ(z) for some
σ(z) if and only if ∃xβ(z,x) |= σ(z), which in turn holds if and only if
β(z,x) |= σ(z).

2. α(z) ≈ ∀xβ(z,x) if and only if ¬α(z) ≈ ¬(∀xβ(z,x)). With the quantifier
inversion rule ¬(∀xβ(z,x)) ≈ ∃x¬β(z,x), the claim follows immediately

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 7

from (1).
3. This is the result of applying (1) and (2) to Definition 2.

�

When working with formulas in CNF, it is a good idea to separate literals over
auxiliary variables in a clause from literals over original variables. Then we can
attempt to characterize the expressive power of auxiliary variables depending on the
structure of the auxiliary parts of clauses. On the basis of the previous lemma, we can
also consider quantified formulas with literals over bound variables on the one hand
and literals over free variables on the other hand. For a quantified Boolean formula
Φ = Q1v1...Qnvn φ1 ∧ ... ∧ φq, Qi ∈ {∀,∃}, we write φk = φb

k ∨ φ
f
k where the

bound part φb
k contains all literals in the clause which are over a quantified variable

vi, and the free part φf
k contains all free literals.

We will now show that the structure of minimal unsatisfiable or minimal false
subformulas of the bound parts has a strong influence on the expressive power of the
bound or auxiliary variables. A CNF formula φ = φ1 ∧ ... ∧ φq is called minimal
unsatisfiable if and only if φ is unsatisfiable and the removal of an arbitrary clause
φi produces a satisfiable formula. A quantified Boolean formula Ψ = Q

∧
1≤i≤q ψi

with CNF matrix and without free variables is called minimal false if and only if Ψ
is false and removing an arbitrary clause ψi leads to a true formula. If Ψ is purely
existentially quantified, it is minimal false if and only if the matrix is minimal unsat-
isfiable.

Let ∃x φb = ∃x1...∃xn φ
b
1∧...∧φb

q be a minimal false formula over the variables
x = x1, ..., xn, and let φf

1 , ..., φ
f
q be formulas over a different set of variables z. Then

it holds that ∃x1...∃xn (φb
1 ∨ φ

f
1) ∧ ... ∧ (φb

q ∨ φ
f
q) is equivalent to φf

1 ∨ ... ∨ φ
f
q .

The reason is that making at least one of the free parts true has the same effect as
removing at least one of the bound parts, which makes the remainder true due to the
minimal falsity of ∃x φb. The same idea applies if we also allow universal quantifiers
and Q1v1...Qnvn φ

b is minimal false.
In general, the quantified bound parts of a quantified CNF formula are not nec-

essarily minimal false, but they should at least be false. Otherwise, the formula would
be true regardless of the free parts and therefore be tautological with respect to the
free variables. With the quantified bound parts being false, we can lift the previ-
ous idea by considering all their minimal false subformulas. The following example
illustrates this. Let

Φ = ∀x∃y0∃y1 (y0 ∨ z0) ∧ (¬y0 ∨ z1) ∧ (¬y0 ∨ z2) ∧ (y1 ∨ z3) ∧ (x ∨ z4)

be a formula with quantified variables x, y0, y1 and free variables z0, ..., z4. Then the
quantified bound parts

∀x∃y0∃y1 φ
b
1 ∧ φb

2 ∧ φb
3 ∧ φb

4 ∧ φb
5 = ∀x∃y0∃y1 y0 ∧ ¬y0 ∧ ¬y0 ∧ y1 ∧ x

8 Studies in Logic, Vol. 3, No. 3 (2010)

are false and contain 3 minimal false subformulas: ∃y0 φ
b
1 ∧ φb

2 = ∃y0 y0 ∧ ¬y0,
∃y0 φ

b
1 ∧ φb

3 = ∃y0 y0 ∧ ¬y0 and ∀x φb
5 = ∀x x. Notice that ∃y0 y0 ∧ ¬y0 occurs

twice: once for φb
1 ∧ φb

2 and once for φb
1 ∧ φb

3. The original formula Φ can only
become satisfied if each of these minimal false subformulas is disabled by satisfying
at least one of the corresponding free parts. That means φf

1 ∨φ
f
2 must be satisfied, as

well as φf
1 ∨ φ

f
3 , and also φf

5 . It follows that Φ ≈ (φf
1 ∨ φ

f
2) ∧ (φf

1 ∨ φ
f
3) ∧ φf

5 . In
general, we have the following theorem:

Lemma 4 (MF Skeleton)
Let Φ = Q

∧
1≤i≤q(φ

b
i ∨ φf

i) be a quantified CNF formula with non-empty

bound parts φb
i and free parts φf

i . Let

S(Φ) :=
{

Φ′ | Φ′ = Qφb
i1 ∧ ... ∧ φ

b
ir is minimal false, 1 ≤ i1, ..., ir ≤ q

}
be the set of minimal false subformulas of the quantified bound parts of Φ. Then the
following equivalence holds:

Φ ≈
∧

(Qφb
i1
∧...∧φb

ir
)∈S(Φ)

(φf
i1
∨ . . . ∨ φf

ir
)

Proof Let M(Φ) :=
∧

(Qφb
i1
∧...∧φb

ir
)∈S(Φ)(φ

f
i1
∨ . . . ∨ φf

ir
) be the right side of the

equivalence. From right to left, let M(Φ) be true for a truth assignment τ to the free
variables. Suppose τ(Φ) is false. Let Qφ′ := Q(φb

i1
∧ . . . ∧ φb

ir
) be the quantified

bound parts for which τ(φf
ik

) is false for 1 ≤ k ≤ r. Under the assumption that τ(Φ)
is false, Qφ′ is also false and contains therefore a minimal false subformula, say
Qφ∗ := Q(φb

j1
∧ . . . ∧ φb

jt
). Since τ(M(Φ)) is true, one of the free parts φf

j1
, ..., φf

jt

must be true for τ . That is a contradiction.
From left to right, let Φ be true for a truth assignment τ to the free variables. Suppose
τ(M(Φ)) is false. Then there is a clause φ′ := (φf

i1
∨ . . . ∨ φf

ir
) in M(Φ) for which

τ(φf
ik

) is false for 1 ≤ k ≤ r. Since Q(φb
i1
∧ . . . ∧ φb

ir
) is minimal false, we can

conclude that τ(Φ) is false in contradiction to our assumption. �

Deciding whether or not a formula is minimal false is usually a difficult task
and at least as hard as the satisfiability problem. Another problem is that a formula
Q1v1...Qnvn φb might have exponentially many minimal false subformulas. This
holds even for relatively simple subclasses of quantified Boolean formulas. For in-
stance, it is well known that propositional Horn formulas can have exponentially
many minimal unsatisfiable subformulas.

4. Propositional Definitions

Definitions play a very important role in knowledge representation, because they
do not only lead to shorter encodings avoiding long repetitions, but they can also

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 9

contribute to a better understanding and to short and easy proofs.
A popular and powerful kind of definition is based on introducing new names

for propositional formulas. For example, let x1 := a ∧ b, x2 := c ∨ ¬x1, and x3 :=
(x1 ∧¬a)∨ (c∧ x2). That means x1 equals the formula a∧ b, and for x2, we obtain
c ∨ ¬(a ∧ b) after substituting a ∧ b for the occurrence of x1. Finally, x3 abbreviates
the formula ((a ∧ b) ∧ ¬a) ∨ (c ∧ (c ∨ ¬(a ∧ b))). When such a sequence of nested
abbreviations xi is unfolded by substituting propositional formulas step by step, we
may end up with a propositional formula of exponential length. But we will later
see that every Boolean circuit can be represented by a system of definitions of linear
length, and vice versa. That illustrates the expressive power of these definitions, in
addition to their advantage of more natural formulations. However, expressions of
the form xi := φi are not propositional or quantified Boolean formulas and require
an extension of the syntax. So, most current SAT-solvers cannot deal directly with
such definitions of abbreviations. A well-known alternative is to use bi-implications
y ↔ α, where α is a propositional formula and y is a new variable. Since we want to
consider also compound definitions that consist of multiple such bi-implications, we
introduce the following notation:

Definition 5 (Propositional Definition)
Let α1, ..., αm be propositional formulas. Then a sequence of bi-implications

D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) := (y1 ↔ α1) ∧ ... ∧ (ym ↔ αm) is
called a definition if and only if var(αi) ∩ {yi, ..., ym} = ∅ for i = 1, ...,m.

The introduced variables yi are called def-variables, and the other variables
∪i var(αi) \ {y1, ..., ym} are called original variables.

Every definition D(y1, ..., ym) specifies a sequence of defined formulas

defD(y1) := α1 and defD(yi) := αi[yi−1/αi−1]...[y1/α1] for i = 2, ...,m

where β[y/σ] is the result of substituting σ for every occurrence of y in β.
We define the length ofD as |D(y1, ..., ym)| := |(y1 ↔ α1)∧...∧(ym ↔ αm)|.

The constraint var(αi) ∩ {yi, ..., ym} = ∅ is necessary in order to avoid cyclic
dependencies like yi ↔ yj , yj ↔ yi.

We can safely use a def-variable as an abbreviation of the defined formula, be-
cause an occurrence of a def-variable in combination with its definition has the same
consequences over the original variables as the corresponding defined formula:

Lemma 6 (Definitions and Auxiliary Variables)
Let D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) be a definition.
For i = 1, ...,m, it holds that

∃y1...∃ym (D(y1, ..., ym) ∧ yi) ≈ defD(yi)

10 Studies in Logic, Vol. 3, No. 3 (2010)

and the def-variables y1, ..., ym are auxiliary variables for D(y1, ..., ym) ∧ yi and
defD(yi).

Proof

∃y1...∃ym (D(y1, ..., ym) ∧ yi)

≈ ∃y1...∃yi−1∃yi+1...∃ym

(∧
j 6=i(yj ↔ αj) ∧ αi

)
≈ ∃y1...∃yi−1∃yi+1...∃ym

(∧
j 6=i(yj ↔ αj) ∧ αi[yi−1/αi−1]...[y1/α1]

)
≈

(
∃y1...∃yi−1∃yi+1...∃ym

∧
j 6=i(yj ↔ αj)

)
∧ αi[yi−1/αi−1]...[y1/α1]

Now, it is easy to see that ∃y1...∃yi−1∃yi+1...∃ym
∧

j 6=i(yj ↔ αj) is a tautol-
ogy. With αi[yi−1/αi−1]...[y1/α1] = defD(yi), we immediately have the equiva-
lence.

Then it follows from Lemma 3 that y1, ..., ym are auxiliary variables. �

For practical applications, it might be even more useful to have an equivalence
like ∃y1...∃ym (D(y1, ..., ym) ∧ φ) ≈ φ[ym/defD(ym)]...[y1/defD(y1)], where φ is
an arbitrary formula in which def-variables are used, and the equivalence makes sure
that this formula behaves just like the original formula without abbreviations. Such
an equivalence can easily be obtained from Lemma 6:

Corollary 7 ∃y1...∃ym (D(y1, ..., ym)∧φ) ≈ φ[ym/defD(ym)]...[y1/defD(y1)] for
a definition D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) and an arbitrary propositional
formula φ.

Proof Introduce an additional variable ym+1 with the definition ym+1 ↔ φ and
apply Lemma 6 for i = m+ 1. �

Definitions have been applied successfully in finding shorter proofs. For ex-
ample, extended resolution [19] combines the ordinary resolution rule [17] with an
extension rule that allows the introduction of definitions. For the resolution calculus,
it has been shown [10] that the pigeon-hole formulas require exponentially many res-
olution steps. The standard representation of the pigeon-hole principle encodes that
there is no one-to-one mapping between two sets having n+ 1 and n elements. This
leads to the following formula:

For 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1, we have variables xi,j , where the index i
denotes the holes, j denotes the pigeons, and xi,j has the intended meaning “pigeon j
is in hole i”. The resulting formula ϕn = αn ∧ βn contains two kinds of constraints:

1. In every hole there is at most one pigeon:
αn =

∧
1≤i≤n

∧
1≤k<j≤n+1(¬xi,k ∨ ¬xi,j)

2. Every pigeon is in one hole:
βn =

∧
1≤j≤n+1(x1,j ∨ ... ∨ xn,j)

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 11

There is some constant c > 1 for which every resolution refutation of ϕn requires
at least cn resolution steps. For the extended resolution, however, it is well-known
that a proof can be constructed in O(n4) steps [6]. It is an open question whether
for any formula in conjunctive normal form there is a short proof by extended resolu-
tion. But unless NP=coNP, there must exist formulas for which every proof requires
superpolynomially many steps.

The power of definitions can also be seen when relating them to Boolean cir-
cuits. According to the following lemma, propositional definitions can compactly
encode circuits, and vice versa.

Lemma 8 (Expressive Power of Propositional Definitions)
1. There exists a polynomial p, such that for every definition D(y1, ..., ym) there are
circuits c1, ..., cm equivalent to defD(y1), ..., defD(ym) and the size of ci is less than
p(|D|).
2. For every circuit c, there exists a definition D(y1, ..., ym), such that c is equivalent
to defD(ym) and the length of D is linear in the size of c.

Proof 1. defD(y1) = α1 is a propositional formula, so it is clear that it can be
represented by an equivalent circuit c1 of polynomial size.
Similarly, for α2 there is a poly-size circuit cα2 in standard form that has inputs
labeled with positive and negated instances of the variables var(α2). We can
now combine c1 and cα2 into a poly-size circuit c2 equivalent to defD(y2) =
α2[y1/α1] by connecting the output of c1 to the input y1 of cα2 and the negated
output of c1 to the input ¬y1 of cα2 .
For i = 3, ...,m, we can analogously obtain ci from a circuit cαi for αi into
which the outputs of c1, ..., ci−1 are fed. Notice that ci−1 might itself rely on
the outputs of c1, ..., ci−2, and ci−2 on c1, ..., ci−3, and so on, which would
cause the size of ci to be exponential. But we can make use of fan-out and
simultaneously feed the output of a circuit cj , j = 1, ..., i − 1, into all subse-
quent circuits cj+1, ..., ci. That means each such circuit cj needs to occur at
most once in ci, and it follows that the size of ci remains polynomial.

2. Let vi1 , ..., vir be a topological ordering of the gates in c. Then we associate
with every gate vij a bi-implication yij ↔ (u1 ◦ u2), with ◦ = ∧ if vij is an
AND gate and ◦ = ∨ for an OR gate. yij is a new variable, and u1, u2 ∈
var(c) ∪ {yi1 , ..., yij−1} are the inputs to the gate, where outputs of preceding
gates are represented by previously introduced def-variables. Obviously, the
sequence of all bi-implications exactly describes the circuit c, and its size is
linear in the number of gates of c.

�

12 Studies in Logic, Vol. 3, No. 3 (2010)

5. Restrictions on the Structure of Definitions

Now, we will discuss the expressive power of propositional definitions under
various constraints. Let D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm), then a nat-
ural type of constraint is to enforce restrictions on the occurrences of literals over
def-variables y1, ..., yi−1 in each formula αi. When we restrict the number of such
literals, we can distinguish the following three cases:

1. In the easiest case, the formulas α1, ..., αm do not contain any literals over
def-variables, which we call a pure definition. For pure definitions, it is clear
that defD(yi) = αi, which means the expressive power is the same as that of
propositional formulas.

2. If each formula αi may contain at most one literal over a def-variable, the def-
inition is called simple. Since defD(yi) = αi[yi−1/αi−1]...[y1/α1] and every
def-variable occurs at most once, the length of defD(yi) cannot exceed the
length of D. That means pure definitions and simple definitions have the same
expressive power.

3. In the case of arbitrary bi-implications yi ↔ αi, we can restrict ourselves to
bi-implications of the form y ↔ L1 ∨ L2 where Lj is a literal. Let y ↔ α ∨ β
where α is not a literal, then we can replace this by two bi-implications y ↔
y1 ∨ β, y1 ↔ α, and analogously for β. We can assume that α (β, resp.) is
in negation normal form. If α (β, resp.) is itself a disjunction, we apply the
previous rule again. Otherwise, a bi-implication with a conjunction x↔ φ∧ψ
can be replaced by x↔ ¬x1 and x1 ↔ ¬φ∨¬ψ. If ¬φ and ¬ψ are not literals,
equivalent formulas in negation normal form can be substituted for them, and
the previous rewriting rules can be applied inductively.
These replacements only cause a linear growth of the definitions, so the expres-
sive power remains the same and corresponds to that of circuits according to
the previous lemma. Pure and simple definitions, on the other hand, appear to
be significantly weaker, since it is generally assumed that there exist Boolean
circuits which require superpolynomial encodings as propositional formulas.

Besides placing restrictions on the number of literals over def-variables, we can
also consider constraints on the polarity of the def-variables.

Definition 9 (Positive Definition)

We call a definition D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) positive if the
propositional formulas α1, ..., αm are each in negation normal form and contain no
occurrences of negated literals over def-variables, so the only variables that can be
negated are the original variables.

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 13

An example of a positive definition is

D(y1, y2) = (y1 ↔ ¬a, y2 ↔ (¬b ∨ y1))

with defD(y1) = ¬a and defD(y2) = ¬b ∨ ¬a. From Lemma 6, it follows that
∃y1∃y2 (D(y1, y2) ∧ yi) ≈ defD(yi) for i = 1, 2. Interestingly, this property still
holds when we replace the bi-implications with simple implications →. Then we
obtain D′(y1, y2) = (y1 → ¬a, y2 → (¬b ∨ y1)), and it can easily be verified that
∃y1∃y2 (D′(y1, y2) ∧ yi) ≈ defD(yi), i = 1, 2. But for arbitrary definitions without
restrictions on the polarities of def-variables, it is in general not possible to substitute
simple implications for bi-implications without losing that property. Consider the
example G = (y1 ↔ a, y2 ↔ ¬y1) with defG(y1) = a and defG(y2) = ¬a. For
G′ = (y1 → a, y2 → ¬y1), we obtain ∃y1∃y2 (G′ ∧ y1) ≈ a, but ∃y1∃y2 (G′ ∧ y2)
is true regardless of the value of a, and thus ∃y1∃y2 (G′ ∧ y2) 6≈ defG(y2).

Lemma 10 Let D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) be a positive definition,
and let D′(y1, ..., ym) = (y1 → α1, ..., ym → αm). Then

∃y1...∃ym (D′(y1, ..., ym) ∧ yi) ≈ defD(yi)

for 1 ≤ i ≤ m.

Proof We use induction on the number of def-variables. For definitions with one
def-variable, it is obvious that ∃y1 ((y1 → α1) ∧ y1) ≈ α1.

For m > 1, let E(y2, ..., ym) = (y2 ↔ α2, ..., ym ↔ αm) and E′(y2, ..., ym) =
(y2 → α2, ..., ym → αm) be a subset of the (bi-)implications in D and D′. Then

Φ := ∃y1...∃ym (D′(y1, ..., ym) ∧ yi)
≈ ∃y1 ((y1 → α1) ∧ (∃y2...∃ym (E′(y2, ..., ym) ∧ yi))) .

If i = 1, this is equivalent to ∃y1 ((y1 → α1) ∧ y1 ∧ (∃y2...∃ymE
′(y2, ..., ym))),

which in turn is equivalent to α1, because ∃y2...∃ymE
′(y2, ..., ym) is trivially true by

assigning y2 = ... = ym = 0.
If i > 1, we can expand y1 by the well-known Shannon expansion:

∃y1 ((y1 → α1) ∧ (∃y2...∃ym (E′(y2, ..., ym) ∧ yi)))
≈ (∃y2...∃ym (E′(y2, ..., ym) ∧ yi)) [y1/0]

∨ (α1 ∧ (∃y2...∃ym (E′(y2, ..., ym) ∧ yi))) [y1/1]

E is a definition withm−1 def-variables, and by the induction hypothesis, the above
is equivalent to

defE (yi)[y1/0] ∨ (α1 ∧ defE (yi)[y1/1])
= αi[yi−1/αi−1]...[y2/α2][y1/0] ∨ (α1 ∧ αi[yi−1/αi−1]...[y2/α2][y1/1]) (∗)
≈ αi[yi−1/αi−1]...[y2/α2][y1/α1] (∗∗)
= defD(yi)

14 Studies in Logic, Vol. 3, No. 3 (2010)

where the equivalence between (∗) and (∗∗) is due to the fact that αi cannot contain
negative occurrences of y1. �

It can be shown that the previously mentioned Tseitin CNF transformation ([16,
19]) by successively replacing α ∨ (β ∧ π) with (α ∨ x) ∧ (x → (β ∧ π)) ≈ (α ∨
x) ∧ (¬x ∨ β) ∧ (¬x ∨ π) for a new variable x produces positive definitions. This
explains why it is sufficient to use simple implications x→ (β ∧ π).

In fact, it is always straightforward to obtain positive definitions: every unre-
stricted definition D(y1, ..., ym) = (y1 ↔ α1, ..., ym ↔ αm) can be transformed
into a positive definition P (y+

1 , y
−
1 ..., y

+
m, y

−
m) which is equivalent in the sense that

defD(yi) = defP (y+
i) and the length of P is linear in the length ofD. The idea is that

positive occurrences of a def-variable yi are replaced with y+
i , whereas y−i represents

the negated occurrences of yi. Without loss of generality, we assume that α1, ..., αm

is in negation normal form, and with αi, we denote the negation normal form of the
complement ¬αi of αi. The first step of the transformation is to replace y1 ↔ α1

with y+
1 ↔ α1 and y−1 ↔ α1. For i = 2, ...,m, we now successively define:

y+
i ↔ αi[¬yi−1/y

−
i−1]...[¬y1/y

−
1][+yi−1/y

+
i−1]...[+y1/y

+
1]

y−i ↔ αi[¬yi−1/y
−
i−1]...[¬y1/y

−
1][+yi−1/y

+
i−1]...[+y1/y

+
1]

Here, +yk/y
+
k means that only unnegated occurrences of yk are replaced with y+

k .
Since this transformation only doubles the size of definitions, it follows that positive
definitions have a similar expressiveness as unrestricted definitions.

6. Propositional Definitions and Quantified Boolean Formulas

The expressive power of propositional definitions is closely related to a spe-
cial class of quantified Boolean formulas. Let Φ = ∃v1...∃vn φ1 ∧ ... ∧ φq be an
existentially quantified Boolean formula in conjunctive normal form (∃CNF∗). As
before, we separate each clause φi into φi = φb

i ∨ φ
f
i with the bound part φb

i and
the free part φf

i . Now, we place additional restrictions on the bound parts, but not
on the free parts. For example, we denote with ∃HORNb the class of existentially
quantified CNF formulas in which the quantified variables satisfy the Horn property.
That means φb

i ∈HORN and φf
i ∈PROP, so that each clause may contain at most one

positive existential literal, but arbitrarily many free or negative existential ones.
It turns out that these ∃HORNb formulas have essentially the same expressive

power as definitions written as ∃y1...∃ym (y1 → α1) ∧ ... ∧ (ym → αm) ∧ yi (as
in Lemma 10). The latter is not necessarily a formula in conjunctive normal form,
but with a combination of the distributive laws and the introduction of additional
(positive) definitions as in the Tseitin procedure, it can be transformed into an equiv-
alent CNF formula of polynomial size. Then each clause in the resulting formula has

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 15

at most one negative existential literal. By inverting the polarity of each existential
literal, we obtain an ∃HORNb formula.

An alternative transformation of propositional definitions into polynomial-size
∃HORNb formulas, and also in the inverse direction, is possible by the polynomial-
space, and in fact also polynomial-time, transformations from definitions to Boolean
circuits, and the other way round, which have been given in Lemma 8. These can
be combined with results on Boolean circuits and ∃HORNb formulas ([1, 14]) which
show that there are polynomial-time transformations between the two representations
in both directions. From circuits to ∃HORNb, the idea is to label the edges with new
existentially quantified variables and to encode the meaning of the gates into clauses
over the edge labels (similar to the technique in [3]). This produces ∃HORNb clauses
which each contain at most three literals over existentially quantified variables. Cir-
cuits with fan-out 1, that means propositional formulas, can also be represented as
∃HORNb formulas with at most two existential literals per clause (called ∃2-HORNb)
([5]), but it is not clear if ∃2-HORNb is also sufficient for circuits with arbitrary fan-
out.

The transformation in the other direction from ∃HORNb to circuits can be per-
formed with a generalization of unit resolution to non-clausal formulas. ([14]) The
existentially quantified variables are successively eliminated by performing all possi-
ble unit resolutions on them, while simultaneously building circuits for the resolvents.
Possibly exponential growth from substituting previously generated resolvents into
new ones is avoided by reusing earlier results with fan-out, rather than embedding
copies of previously built circuits.

In total, the combination of the transformations between propositional defini-
tions, Boolean circuits and ∃HORNb formulas leads to the following theorem:

Theorem 11 (Propositional Definitions and ∃HORNb Formulas)

1. For every propositional definition D(y1, ..., ym), there exists an ∃HORNb for-
mula Φ with Φ ≈ defD(ym), such that the length of Φ and the time to compute
Φ from D are both polynomial in the length of D.

2. For every ∃HORNb formula Ψ, there exists a propositional definitionD(y1, ...,

ym) with defD(ym) ≈ Ψ, such that the length of D and the time to compute D
from Ψ are both polynomial in the length of Ψ.

We now extend definitions to quantified Boolean formulas. Let ∃xi,1...∃xi,niφi,
1 ≤ i ≤ m, be a formula in ∃CNF∗ and D = (y1 ↔ ∃x1,1...∃x1,n1φ1, ..., ym ↔
∃xm,1...∃xm,nmφm). We assume that all quantified variables are distinct, i.e. xi,j 6=
xk,l whenever i 6= k or j 6= l. Otherwise, they could be renamed accordingly. We
do, however, allow variables to occur as quantified variables in one formula and as
free variables in other formulas. With such definitions, we can also express formulas
with more complex prefixes which are not purely existential. Consider the exam-

16 Studies in Logic, Vol. 3, No. 3 (2010)

ple D = (y1 ↔ ∃x1φ, y2 ↔ ∃x2¬y1, y3 ↔ ¬y2). Here, y1 defines ∃x1φ, y2 is
∃x2∀x1¬φ, and y3 is ∀x2∃x1φ. Assuming that the expressive power of quantified
Boolean formulas properly increases with more quantifier alternations, this allows us
to define formulas which only have superpolynomial encodings as ∃CNF∗ formulas.
When we restrict ourselves to positive definitions, it is easy to see that we remain in
the prefix class of ∃CNF∗.

An interesting open question is whether positive definitions with existential
quantification are exponentially more expressive than positive propositional defini-
tions or, equivalently, whether ∃CNF∗ formulas can be transformed into polynomial-
size ∃HORNb formulas. To discuss this problem in more detail, we now introduce
universal formulas for ∃CNF∗ formulas with at most 3 literals per clause (∃3-CNF∗).
Let δ1, ..., δt(n) be the sequence of all 3-clauses over the variables x1, ..., xn in a fixed
but arbitrary order. Then the number of clauses t(n) is less than 8n3, and for new
variables z = z1, ..., zt(n), we define:

∆n(z1, ..., zt(n)) := ∃x1...∃xn

∧
1≤i≤t(n)

(δi ∨ zi)

Clearly, it holds for every truth assignment v = (v(z1), ..., v(zt(n))) to the
free variables z that ∆n(v(z1), ..., v(zt(n))) = 1 if and only if the set of clauses
{δi | v(zi) = 0} is satisfiable. Thus, the formula encodes the satisfiability problem
for all formulas in 3-CNF over n variables, so we call ∆n(z) a universal formula for
∃3-CNF∗.

We can now show that a polynomial-time transformation from ∃CNF∗ to its
subclass ∃HORNb would imply P = NP.

Lemma 12 If P 6= NP, there exists no polynomial p such that for every ∃CNF∗ for-
mula Φ, an equivalent ∃HORNb formula Ψ can be computed in time at most p(|Φ|).

Proof We assume the contrary that a polynomial-time transformation from ∃CNF∗

to ∃HORNb exists and use it to construct a polynomial-time algorithm for the NP-
complete satisfiability problem for 3-CNF.

Let α = α1∧...∧αk be an arbitrary 3-CNF formula over the variables x1, ..., xn,
and let ∆n(z1, ..., zt(n)) = ∃x1...∃xn

∧
1≤i≤t(n)(δi∨zi) be the corresponding univer-

sal formula for n variables. For sake of simplicity, we assume αi = δi for 1 ≤ i ≤ k,
and we let v = (v(z1), ..., v(zt(n))) be a truth assignment to the free variables with
v(z1) = ... = v(zk) = 0 and v(zk+1) = ... = v(zt(n)) = 1.

Now, α is satisfiable if and only if ∃x1...∃xn (δ1 ∧ ... ∧ δk) = 1, which in turn
holds if and only if ∆n(v(z1), ..., v(zt(n))) = 1. According to our assumption, we
can compute in polynomial time an ∃HORNb formula Ψn with ∆n ≈ Ψn, which
means ∆n(v(z1), ..., v(zt(n))) = 1 if and only if Ψn(v(z1), ..., v(zt(n))) = 1. But
in the formula Ψ(v(z1), ..., v(zt(n))), all free variables are replaced with their corre-

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 17

sponding truth values, which means only quantified variables are left, and they must
satisfy the Horn property. An existentially quantified Horn formula can be solved in
linear time with the well-known unit resolution for propositional Horn formulas, and
thus P = NP in contradiction to our assumption. �

Since it is widely believed that P does not equal NP, we can assume that there
is no polynomial-time transformation from ∃CNF∗ formulas to equivalent ∃HORNb

formulas. The more general question is whether all ∃CNF∗ formulas have equivalent
polynomial-size ∃HORNb formulas when we allow transformations with unlimited
time constraints. It is strongly conjectured that the classes have different expressive
power. In that case, the universal formulas ∆n separate both classes.

Lemma 13 There exist ∃CNF∗ formulas without a polynomial-size ∃HORNb equiv-
alent if and only if there is no polynomial p such that for every n there is a formula
Ψn ∈ ∃HORNb with Ψn ≈ ∆n and |Ψn| ≤ p(|∆n|).

Proof The direction from right to left is clear. For the other direction, we show that
if such a polynomial exists, we can transform an arbitrary ∃CNF∗ formula Φ(w) =
∃x1...∃xn

∧
1≤i≤q φi(x,w) into a polynomial-size ∃HORNb formula. As before, we

consider each clause φi(x,w) to consist of a bound part φb
i(x) and a free part φf

i (w).
We assume that both parts are non-empty for every clause, because clauses with-
out bound variables could be moved in front of the prefix and later be added to the
∃HORNb formula that we are going to construct. Clauses φj = φb

j without free
part can be replaced with (φb

j ∨ w1) ∧ (φb
j ∨ ¬w1). If two clauses have the same

bound parts, i.e. (φb
i ∨ φ

f
i)∧ (φb

i ∨ φ
f
j) for i 6= j, we can replace the first clause with

(y∨φf
i)∧(¬y∨φb

i∨φ
f
i) for a new existentially quantified variable y, so it is sufficient

to consider only formulas with pairwise disjoint bound parts. We can also assume that
all bound parts are in 3-CNF. Otherwise, we could introduce new existential variables
to split bound parts, e.g. (l1∨l2∨l3∨l4∨φf

i) ≈ ∃y (l1∨l2∨y∨φf
i)∧(¬y∨l3∨l4∨φf

i).

For each clause (φb
i ∨ φ

f
i) in Φ(w), there is a corresponding clause (δi′ ∨ zi′)

with δi′ = φb
i in ∆n(z). We now replace (φb

i ∨φ
f
i) with (φb

i ∨zi′) for all i = 1...q and
obtain (after eliminating duplicate clauses) a formula Φ′(z) which is a subformula of
∆n(z). According to our assumption, there is a ∃HORNb formula Ψn(z) equivalent
to ∆n(z) of length at most p(|∆n|), and thus also polynomial in the length of Φ. If
all free variables zj which do not occur in Φ′ are assigned in Ψn the value 1, the
simplified formula Ψ∗

n is equivalent to Φ′.
Now, we undo the previous substitution of free variables zi′ for free parts φf

i (w).
The resulting ∃HORNb formula is equivalent to Φ and polynomial in the length of Φ,
so we have a contradiction to the claim that we cannot always obtain short equivalent
∃HORNb formulas. �

18 Studies in Logic, Vol. 3, No. 3 (2010)

Definition 14 A formula class A is said to be poly-size closed under negation if
and only if there is a polynomial p, such that for every formula Φ ∈ A there exists a
formula Ψ ∈ A with Ψ ≈ ¬Φ and |Ψ| ≤ p(|Φ|).

The class ∃HORNb is poly-size closed under negation. That can be seen as
follows: First, we transform a given formula Φ ∈ ∃HORNb into an equivalent
polynomial-size circuit c using the previously mentioned transformation from [1, 14].
Then we negate the circuit and transform ¬c into a circuit c′ in standard form where
only inputs are negated. This can be achieved by applying de Morgan’s laws and the
elimination of multiple subsequent negations. A circuit in standard form can then
again be represented as a polynomial-size ∃HORNb formula. The transformations
require at most polynomial time and length, so we obtain our desired result. For
∃CNF∗, it is again an open question whether the class is also poly-size closed under
negation. The next lemma shows that we cannot expect to find such complements
within ∃CNF∗ in polynomial time.

Lemma 15 Assuming NP 6= coNP, there is no polynomial-time algorithm to com-
pute for every given formula Φ ∈ ∃CNF∗ a formula Ψ ∈ ∃CNF∗ equivalent to ¬Φ.

Proof Let φ = φ1 ∧ ... ∧ φq be an arbitrary propositional CNF formula over vari-
ables x1, ..., xn. Then φ is unsatisfiable if and only if Φ := ∃x1...∃xn φ1 ∧ ... ∧ φq

is false, which in turn holds if and only if ¬Φ is true. If we could compute in poly-
nomial time an ∃CNF∗ formula Ψ = ∃y1...∃ym ψ1 ∧ ... ∧ ψs with Ψ ≈ ¬Φ, we
could solve the coNP-complete unsatisfiability problem for propositional formulas
in nondeterministic polynomial time by searching for a satisfying assignment in the
complement Ψ, which would imply NP=coNP. �

Similar to Lemma 13 in which the universal formulas ∆n separate the classes
∃HORNb and ∃CNF∗, if they are distinct, the negations of universal formulas have a
superpolynomial length in ∃CNF∗ if the class is not poly-size closed under negation.
The proof is analogous to the proof of Lemma 13.

Lemma 16 The class ∃CNF∗ is not poly-size closed under negation if and only
if there are universal formulas ∆n for which the shortest representation of ¬∆n in
∃CNF∗ requires superpolynomial length.

7. Nested Boolean Functions: Definitions as Function Schemes

An alternative approach for introducing definitions is based on a more functional
view. Every propositional or quantified Boolean formula can be interpreted as a
Boolean function. For example, (¬x∨y)∧(x∨¬y∨z) describes a function f(x, y, z)
over variables x, y and z. A further abstraction is to treat f(x, y, z) := (¬x ∨ y) ∧

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 19

(x∨¬y ∨ z) as a scheme of formulas having the same structure. Then f(x, y, z) can
be instantiated with different variables or other functions. For example, we denote
with f(a, b, c) the formula (¬a ∨ b) ∧ (a ∨ ¬b ∨ c), and f(g(u, v), v, h(w)) is the
formula (¬g(u, v) ∨ v) ∧ (g(u, v) ∨ ¬v ∨ h(w)). We also allow instantiations with
truth values, such as f(1, b, c) = (¬1 ∨ b) ∧ (1 ∨ ¬b ∨ c).

In [7], such a sequence of Boolean functions is called a Boolean program. The
term is also used for a different concept in the context of verification, so to avoid
confusion, we prefer to speak of nested Boolean functions (NBF). An interesting
example given in [7] is the computation of parity. Let

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)

be the parity of two binary variables. Then the parity of four variables can be com-
puted by reusing f0:

f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

Now, the parity of 16 variables is

f2(p1, ..., p16) := f1(f1(p1, ..., p4), f1(p5, ..., p8), f1(p9, ..., p12), f1(p13, ..., p16))

and so on. Obviously, computing the parity of m = 22n
variables requires only

n + 1 function definitions, and the longest contains O(m) variable or function sym-
bols. It is well known [12, 20] that an equivalent propositional formula would have
length at least m2. Before we further discuss the expressive power of nested Boolean
functions, we give a formal inductive definition.

Definition 17 (Nested Boolean Function)
A nested Boolean function NBF (or Boolean program [7]) is a finite sequence of

Boolean functions F = (f1, ..., fl). Each fi has an associated arity ni and arguments
xi := xi,1, ..., xi,ni .

For some t ∈ {1, ..., l}, the initial functions f1, ..., ft are each defined by a
propositional formula αi(xi), that is, fi(xi,1, ..., xi,ni) := αi(xi,1, ..., xi,ni) for i =
1, ..., t.

For i > t, fi can be composed of previously defined functions fj0 , ..., fjm with
j0, ..., jm ∈ {1, ..., i− 1}. Let fj0 have arity m, then the definition of fi has the form
fi(xi) := fj0(fj1(y1), ..., fjm(ym)), where y1, ...,ym are tuples of matching arities
over variables in xi or the Boolean constants 0 and 1.

The length |F | of a nested Boolean function F = (f1, ..., fl) is the total number
of occurrences of variable or function symbols in the definitions of f1, ..., fl.

Nested Boolean functions can provide a characterization of PSPACE by en-
coding computations of polynomial space Turing machines into NBFs of polyno-
mial size, and vice versa [7]. Alternatively, it is possible to give a transformation

20 Studies in Logic, Vol. 3, No. 3 (2010)

from quantified Boolean formulas to NBF by simulating quantifiers. The idea is as
follows: let ∃x φ(x, z1, ..., zr) be an existentially quantified Boolean formula with
a propositional matrix φ over the existential x and free variables z1, ..., zr. Then
∃x φ(x, z1, ..., zr) ≈ φ(0, z1, ..., zr) ∨ φ(1, z1, ..., zr) by the well-known Shannon
expansion. This can easily be expressed by a nested Boolean function: if we define
f(x, z1, ..., zr) := φ(x, z1, ..., zr) and g∃(a, b) := a∨b, it follows that g∃(f(0, z1, ...,
zr), f(1, z1, ..., zr)) is equivalent to the existentially quantified formula. In proposi-
tional logic, we would have to explicitly write down φ(0, z1, ..., zr) and φ(1, z1, ..., zr)
as propositional formulas, which would cause exponential growth when applied mul-
tiple times, but nested Boolean functions avoid this through definitions and instan-
tiations. Universal quantifiers can be handled analogously be the dual expansion
∀x φ(x, z1, ..., zr) ≈ φ(0, z1, ..., zr) ∧ φ(1, z1, ..., zr).In total, we obtain the follow-
ing transformation: let Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z), Qi ∈ {∀,∃}, be a QBF
formula with quantified variables v1, .., vn and free variables z = z1, ..., zr. Then we
define

f0(v1, ..., vn, z) := φ(v1, ..., vn, z)
g∀(a, b) := a ∧ b
g∃(a, b) := a ∨ b

and for i = 1, ..., n, we let

fi(vi+1, ..., vn, z) := gQi(fi−1(0, vi+1, ..., vn, z), fi−1(1, vi+1, ..., vn, z))

where gQi is g∀ if Qi = ∀ and g∃ otherwise.
Clearly, the function fn(z) is equivalent to Φ(z), and the length of the NBF F =

(f0, g∃, g∀, f1, ..., fn) is quadratic in the length of Φ(z), so we have the following
lemma:

Lemma 18 For every quantified Boolean formula Φ(z), there exists a nested Boolean
function F = (f1, ..., fl), such that fl(z) ≈ Φ(z) and |F | = O(|Φ(z)|2).

A transformation in the other direction from NBF to QBF∗ is also possible due
to the fact that for every nested Boolean function F = (f1, ..., fl) over variables
z, there exists a polynomial-size Turing machine M with input z which accepts the
input if and only if fl(z) = 1 and which can in turn be mapped in polynomial time
to a QBF∗ formula with free variables z [7, 15].

8. Conclusion

The ability to have auxiliary variables which are not directly taken into account
when considering logical equivalence is a powerful tool. This allows introducing
definitions to avoid repetitions and to increase clarity. We have seen that proposi-
tional definitions correspond to a class of existentially quantified Boolean formulas

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 21

where the bound variables satisfy the Horn property, namely ∃HORNb, and Boolean
circuits with arbitrary fan-out. All of these representations are exponentially more
expressive than propositional CNF. It is widely assumed, but still not proven, that ar-
bitrary propositional formulas, or circuits with fan-out 1, are also exponentially less
powerful than circuits with arbitrary fan-out and the other representations with aux-
iliary variables. A similar open question that we have considered is whether ∃CNF∗

is exponentially more expressive than ∃HORNb.
Another very powerful feature appears to be the addition of universal quantifiers,

which we have seen to be equivalent to nested Boolean functions or positive and
negative definitions with existential quantifiers. It is currently not well understood
how universal quantification can be used in practice to obtain concise encodings, and
we hope that considering alternate representations like nested Boolean functions also
leads to interesting new encoding patterns for QBF∗.

References

[1] S. Aanderaa and E. Börger, 1979, “The Horn complexity of Boolean functions and cook’s prob-
lem”, Proc. 5th Scandinavian Logic Symposium 1979, Aalborg University Press, pp. 231-256.

[2] B. Aspvall, M. Plass and R. Tarjan, 1979, “A linear-time algorithm for testing the truth of certain
quantified Boolean formulas”, Information Processing Letters, 8(3):121-123.

[3] M. Bauer, D. Brand, M. Fischer, A. Meyer and M. Paterson, 1973, “A note on disjunctive form
tautologies”, SIGACT News, 5(2):17-20.

[4] A. Biere, A. Cimatti, E. Clarke and Y. Zhu, 1999, “Symbolic model checking without BDDs”,
Proc. 5th Intl. Conf. on Tools and Algorithms for Construction and Analysis of Systems (TACAS
1999), Springer LNCS 1579, pp. 193-207.

[5] U. Bubeck, and H. Kleine Büning, 2009, “A new 3-CNF transformation by parallel-serial graphs”,
Journal Information Processing Letters, 109(7):376-379.

[6] S. Cook, 1976, “A short proof of the pigeon hole principle using extended resolution”, SIGACT
News, 8(4):28-32.

[7] S. Cook and M. Soltys, 1999, “Boolean programs and quantified propositional proof systems”,
The Bulletin of the Section of Logic, 28(3):119-129.

[8] A. Flögel, M. Karpinski and H. Kleine Büning, 1995, “Resolution for quantified Boolean formu-
las”, Information and Computation, 117(1):12-18.

[9] A. Flögel, H. Kleine Büning, and T. Lettmann, 1993, “On the restricted equivalence for subclasses
of propositional logic”, RAIRO Theoretical Informatics and Applications, 27(4):327-340.

[10] A. Haken, 1985, “The intractability of resolution”,Theoretical Computer Science, 39(2-3):297-
308.

[11] H. Kautz and B. Selman, 1992, “Planning as satisfiability”,Proc. 10th European Conf. on Artifi-
cial Intelligence (ECAI 1992), pp. 359-363.

[12] V. Khrapchenko, 1972, “Methods of determining lower bounds for the complexity of π-schemes”,
Mat. Zametki, 10(1):83-92 (in Russian); English translation in: Math. Notes Acad. Sciences
USSR, 10(1):474-479.

[13] H. Kleine Büning and T. Lettmann, 1999, Propositional Logic: Deduction and Algorithms, Cam-
bridge University Press, Cambridge, UK.

22 Studies in Logic, Vol. 3, No. 3 (2010)

[14] H. Kleine Büning, X. Zhao and U. Bubeck, 2009, “Resolution and expressiveness of subclasses
of quantified Boolean formulas and circuits”, Proc. 12th Intl. Conf. on Theory and Applications
of Satisfiability Testing (SAT 2009), Springer LNCS 5584, pp. 391-397.

[15] A. Meyer and L. Stockmeyer, 1973, “Word problems requiring exponential time”, Preliminary
Report, Proc. 5th ACM Symp. on Theory of Computing (STOC 1973), pp. 1-9.

[16] D. Plaisted and S. Greenbaum, 1986, “A structure-preserving clause form translation”, Journal of
Symbolic Computation, 2(3):293-304.

[17] J. Robinson, 1965, “A machine-oriented logic based on the resolution principle”, Journal of the
ACM, 12(1):23-41.

[18] L. Stockmeyer, 1976, “The polynomial-time hierarchy”, Theoretical Computer Science, 3(1):1-
22.

[19] G. Tseitin, 1970, “On the Complexity of Derivation in Propositional Calculus”, In A. Silenko
(ed.): Studies in Constructive Mathematics and Mathematical Logic, Part II, pp. 115-125.

[20] I. Wegener, 1987, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Sci-
ence, B.G. Teubner, Stuttgart.

[21] C. Wrathall, 1976, “Complete sets and the polynomial-time hierarchy”, Theoretical Computer
Science, 3(1):23-33.

Uwe Bubeck, Hans Kleine Büning / The Power of Auxiliary Variables for Propositional Formulas and QBF 23

9ÏC��u·K�þzÙ�úª��^

¿�Ù��

ø�Æ��ÆO�Å�ÆïÄ¤

bubeck@upb.de

Çd�4@Ù½w

ø�Æ��ÆO�Å�ÆïÄ¤

kbcsl@upb.de

Á �

�
°{�g,6��L��£§y8Æ.õ^/9ÏC�±Ú\½Â��

{"ù�Ø©¥§·��Ñ
9ÏC��/ªz½Â§u�
ÙL�å¿?Ø

k���'A^"

·�r±eüöéXå5µ�´§�E¦^�E�½Â�¥m(J��{¶

�´§Ù�¼êÙ¦Ly¥��qVg"AO�§·�y²
�¹�'½Â�·

KÜ6�±eüöäk�Ó�L�å"�´äk?¿ÑÑà�Ù��´§�´�

åC�÷vHorn5���3þzÙ�úª£P�∃HORNb¤"

�©��Ä
½Â(����§±9·K½Â�*¿"AO�§·�u�

�·K½Â��3þz��½Â�m�'X£½�d/§u�
∃HORNbúªÚ

�åC���Horn�½��3þz�CNFúª£P�∃CNF∗¤�m�'X¤"é·

K½Â�?�Ú*¿§́ #N3½Â¥¦^?¿�þc§½�d/§#NÙ�ú

ª�i\"·��y²
§þzCNFúªÙ�åC��L�å§́ d4�¥��

åÜ©�4�Ø÷vfúª½4�bfúª�(�¤û½�"

	Introduction
	Preliminaries
	Auxiliary Variables
	Propositional Definitions
	Restrictions on the Structure of Definitions
	Propositional Definitions and Quantified Boolean Formulas
	Nested Boolean Functions: Definitions as Function Schemes
	Conclusion

